Spherical microphone arrays have been recently studied for sound analysis and sound recordings, which have the advantage of spherical symmetry facilitating three-dimensional analysis. This paper complements the recent microphone array design studies by presenting a theoretical analysis of plane-wave decomposition given the sound pressure on a sphere. The analysis uses the spherical Fourier transform and the spherical convolution, where it is shown that the amplitudes of the incident plane waves can be calculated as a spherical convolution between the pressure on the sphere and another function which depends on frequency and the sphere radius. The spatial resolution of plane-wave decomposition given limited bandwidth in the spherical Fourier domain is formulated, and ways to improve the computation efficiency of plane-wave decomposition are introduced. The paper concludes with a simulation example of plane-wave decomposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.