Initially discovered in the context of photosynthesis, regulation by change in the redox state of thiol groups (S-S <--> 2SH) is now known to occur throughout biology. Several systems, each linking a hydrogen donor to an intermediary disulfide protein, act to effect changes that alter the activity of target proteins: the ferredoxin/thioredoxin system, comprised of reduced ferredoxin, a thioredoxin, and the enzyme, ferredoxin-thioredoxin reductase; the NADP/thioredoxin system, including NADPH, a thioredoxin, and NADP-thioredoxin reductase; and the glutathione/glutaredoxin system, composed of reduced glutathione and a glutaredoxin. A related disulfide protein, protein disulfide isomerase (PDI) acts in protein assembly. Regulation linked to plastoquinone and signaling induced by reactive oxygen species (ROS) and other agents are also being actively investigated. Progress made on these systems has linked redox to the regulation of an increasing number of processes not only in plants, but in other types of organisms as well. Research in areas currently under exploration promises to provide a fuller understanding of the role redox plays in cellular processes, and to further the application of this knowledge to technology and medicine.
The plant hormone abscisic acid (ABA) serves as a physiological monitor to assess the water status of plants and, under drought conditions, induces stomatal pore closure by activating specific ion channels, such as a slow-anion channel (SLAC1) that, in turn, mediate ion efflux from the guard cells. Earlier genetic analyses uncovered a protein kinase (OST1) and several 2C-type phosphatases, as respective positive and negative regulators of ABAinduced stomatal closure. Here we show that the OST1 kinase interacts with the SLAC1 anion channel, leading to its activation via phosphorylation. PP2CA, one of the PP2C phosphatase family members acts in an opposing manner and inhibits the activity of SLAC1 by two mechanisms: (1) direct interaction with SLAC1 itself, and (2) physical interaction with OSTI leading to inhibition of the kinase independently of phosphatase activity. The results suggest that ABA signaling is mediated by a physical interaction chain consisting of several components, including a PP2C member, SnRK2-type kinase (OST1), and an ion channel, SLAC1, to regulate stomatal movements. The findings are in keeping with a paradigm in which a protein kinase-phosphatase pair interacts physically with a target protein to couple a signal with a specific response.anion transport ͉ protein dephosphorylation ͉ protein phosphorylation ͉ signal transduction A bscisic acid (ABA) has been found to act as a signal in modulating the activity of both K ϩ and anion channels of the plasma membrane of guard cells (1-3). Based on inhibitor studies, protein kinases and phosphatases constitute an interface between ABA and the ion channel (4-8). Several protein kinases and phosphatases that regulate ABA signaling have been identified in Arabidopsis with genetic approaches. For instance, ABI1 and ABI2 are closely related protein phosphatase 2C (PP2C) members that negatively regulate ABA response (9-11). In a later study, two other PP2C members related to ABI1 and ABI2 were identified in seed germination mutants showing a hypersensitive response to ABA (12). In another line of investigation, reverse genetic procedures have led to the identification of additional PP2C members including PP2CA, HAB1, and HAB2 that play a role in ABA signaling (13)(14)(15). Each of these ABA-signaling members belongs to the ''A type'' PP2C phosphatase family (16).An opposing participant, notably an ABA-activated protein kinase (AAPK), was uncovered early on with Vicia faba (17). In subsequent work, a mutant of the AAPK homologue was identified in Arabidopsis as Open Stomata mutant ost1 (18). The ost1 mutant is ABA-insensitive and keeps its stomata open, even under drought conditions. OST1 is a member of the Arabidopsis SnRK2-type protein kinase family that includes other members functional in the ABA response (19)(20)(21)(22). Each of these SnRK2 kinases is involved in the ABA response and is activated upon ABA treatment.Collectively, previous work has demonstrated that SnRK2-type kinases and PP2C-type phosphatases play a major role in ABA signaling, le...
Since their discovery as a substrate for ribonucleotide reductase (RNR), the role of thioredoxin (Trx) and glutaredoxin (Grx) has been largely extended through their regulatory function. Both proteins act by changing the structure and activity of a broad spectrum of target proteins, typically by modifying redox status. Trx and Grx are members of families with multiple and partially redundant genes. The number of genes clearly increased with the appearance of multicellular organisms, in part because of new types of Trx and Grx with orthologs throughout the animal and plant kingdoms. The function of Trx and Grx also broadened as cells achieved increased complexity, especially in the regulation arena. In view of these progressive changes, the ubiquitous distribution of Trx and the wide occurrence of Grx enable these proteins to serve as indicators of the evolutionary history of redox regulation. In so doing, they add a unifying element that links the diverse forms of life to one another in an uninterrupted continuum. It is anticipated that future research will embellish this continuum and further elucidate the properties of these proteins and their impact on biology. The new information will be important not only to our understanding of the role of Trx and Grx in fundamental cell processes but also to future societal benefits as the proteins find new applications in a range of fields.
BackgroundSacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan.ResultsThe genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101× and 5.2×. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment.ConclusionsThe slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.