Baculoviruses are arthropod-specific large DNA viruses that orally infect the larvae of lepidopteran, hymenopteran and dipteran insect species. These larvae become infected when they eat a food source that is contaminated with viral occlusion bodies (OBs). These OBs contain occlusion-derived viruses (ODVs), which are released upon ingestion of the OBs and infect the endothelial midgut cells. At least nine different ODV envelope proteins are essential for this oral infectivity and these are denoted per os infectivity factors (PIFs). Seven of these PIFs form a complex, consisting of PIF1, 2, 3 and 4 that form a stable core complex and PIF0 (P74), PIF6 and PIF8 (P95) that associate with this complex with lower affinity than the core components. The existence of a PIF complex and the fact that the pif genes are conserved in baculovirus genomes suggests that PIF-proteins cooperatively mediate oral infectivity rather than as individual functional entities. This review therefore discusses the knowledge obtained for individual PIFs in light of their relationship with other members of the PIF complex.
Baculoviruses orally infect caterpillars in the form of occlusion-derived viruses (ODVs). The ODV-envelope contains a number of proteins which are essential for oral infectivity, called per os infectivity factors (PIFs). Most of these PIFs are involved in the formation of an ODV-entry complex that consists of a stable core, formed by PIF1, PIF2, PIF3 and PIF4, and the more loosely associated PIFs P74 (PIF0) and P95 (PIF8). PIF1, PIF2 and PIF3 are essential for formation of the stable core, whereas deletion of the pif4 gene results in the formation of a smaller complex. P74 is not needed for formation of the stable core. We show here in larva-derived ODVs of the Autographa californica multicapsid nucleopolyhedrovirus that PIF-proteins are degraded by host-derived proteases after deletion of a single pif-gene. Constituents of the stable core-complex appeared to be more resistant to proteases as part of the complex than as monomer, as in ODVs of a p74 deletion mutant only the stable core was found but no PIF monomers. When the stable core lacks PIF4, it lost its proteolytic resistance as the resulting smaller core complex was degraded in a pif4 deletion mutant. We also identified PIF6 as a loosely associated component of the entry complex that appeared nevertheless important for the proteolytic resistance of the stable core, which was degraded after deletion of pif6. We conclude from these results that an intact entry-complex in the ODV-envelope is prerequisite for proteolytic resistance of PIF-proteins under the alkaline conditions of the larval midgut.
Introduction: The current COVID-19 pandemic has caused large shortages in personal protective equipment, leading to hospitals buying their supplies from alternative suppliers or even reusing single-use items. Equipment from these alternative sources first needs to be tested to ensure that they properly protect the clinicians that depend on them. This work demonstrates a test suite for protective face masks that can be realized rapidly and cost effectively, using mainly off-the-shelf as well as 3D printing components. Materials and Methods: The proposed test suite was designed and evaluated in order to assess its safety and proper functioning according to the criteria that are stated in the European standard norm EN149:2001+A1 7. These include a breathing resistance test, a CO2 build-up test, and a penetration test. Measurements were performed for a variety of commercially available protective face masks for validation. Results: The results obtained with the rapidly deployable test suite agree with conventional test methods, demonstrating that this setup can be used to assess the filtering properties of protective masks when conventional equipment is not available. Discussion: The presented test suite can serve as a starting point for the rapid deployment of more testing facilities for respiratory protective equipment. This could greatly increase the testing capacity and ultimately improve the safety of healthcare workers battling the COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.