The term "insider threat" can take many forms, ranging from an information security risk to the threat of an active shooter. Accordingly, it is beneficial to researchers and practitioners to understand the relationship between psychological factors and the different types of threats an insider may pose to an organization.This research advances this understanding.Specifically, we investigate the three-way relationship between user-generated text, psychological factors espoused in insider threat literature, and risk indicator categories used by the U.S. Government. We employ advancements in machine learning and Natural Language Processing to investigate this relationship.Specifically, we use Bidirectional Encoder Representations from Transformers (BERT) for word embedding and vector space modeling. Our results indicate that there are indeed associations between established risk categories and the psychological factors seen as predictive of malicious insiders. Our exploratory research also reveals that further research is warranted to advance the predictive capability of insider threat modeling 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.