SUMMARY1. This synthesis examines 35 long-term (5-35 years, mean: 16 years) lake re-oligotrophication studies. It covers lakes ranging from shallow (mean depth <5 m and/or polymictic) to deep (mean depth up to 177 m), oligotrophic to hypertrophic (summer mean total phosphorus concentration from 7.5 to 3500 lg L )1 before loading reduction), subtropical to temperate (latitude: 28-65°), and lowland to upland (altitude: 0-481 m). Shallow northtemperate lakes were most abundant. 2. Reduction of external total phosphorus (TP) loading resulted in lower in-lake TP concentration, lower chlorophyll a (chl a) concentration and higher Secchi depth in most lakes. Internal loading delayed the recovery, but in most lakes a new equilibrium for TP was reached after 10-15 years, which was only marginally influenced by the hydraulic retention time of the lakes. With decreasing TP concentration, the concentration of soluble reactive phosphorus (SRP) also declined substantially. 3. Decreases (if any) in total nitrogen (TN) loading were lower than for TP in most lakes. As a result, the TN : TP ratio in lake water increased in 80% of the lakes. In lakes where the TN loading was reduced, the annual mean in-lake TN concentration responded rapidly. Concentrations largely followed predictions derived from an empirical model developed earlier for Danish lakes, which includes external TN loading, hydraulic retention time and mean depth as explanatory variables. 4. Phytoplankton clearly responded to reduced nutrient loading, mainly reflecting declining TP concentrations. Declines in phytoplankton biomass were accompanied by shifts in community structure. In deep lakes, chrysophytes and dinophytes assumed greater importance at the expense of cyanobacteria. Diatoms, cryptophytes and chrysophytes became more dominant in shallow lakes, while no significant change was seen for cyanobacteria. 5. The observed declines in phytoplankton biomass and chl a may have been further augmented by enhanced zooplankton grazing, as indicated by increases in the zooplankton : phytoplankton biomass ratio and declines in the chl a : TP ratio at a summer mean TP concentration of <100-150 lg L )1 . This effect was strongest in shallow lakes. This implies potentially higher rates of zooplankton grazing and may be ascribed to the observed large changes in fish community structure and biomass with decreasing TP contribution. In 82% of the lakes for which data on fish are available, fish biomass declined with TP. The percentage of piscivores increased in 80% of those lakes and often a shift occurred towards dominance by fish species characteristic of less eutrophic waters. 6. Data on macrophytes were available only for a small subsample of lakes. In several of those lakes, abundance, coverage, plant volume inhabited or depth distribution of submerged macrophytes increased during oligotrophication, but in others no changes were observed despite greater water clarity. 7. Recovery of lakes after nutrient loading reduction may be confounded by concomitant environmental cha...
Inputs of P are essential for profitable crop and livestock production. However, its export in watershed runoff can accelerate the eutrophication of receiving fresh waters. The specialization of crop and livestock farming has created regional imbalances in P inputs in feed and fertilizer and output in farm produce. In many areas, soil P exceeds crop needs and has enriched surface runoff with P. This paper provides a brief overview of P management strategies to maintain agricultural production and protect water quality that were discussed at the conference, “Practical and Innovative Measures for the Control of Agricultural Phosphorus Losses to Water,” sponsored by the Organization for Economic Cooperation and Development and held in Antrim, Northern Ireland, June 1998. The purpose of the conference was to assess current strategies for reducing the loads and concentrations of P from agricultural land to surface waters. Topics discussed at the interdisciplinary conference and reviewed here included sustainable P management in productive agriculture; assessing land application of P; evaluating and modeling P transport and transformations in soil, runoff, streams, and lakes; and implementation of integrated best management practices (BMPs). From these discussions, measures to control agricultural P transfer from soil to water may be brought about by optimizing fertilizer P use‐efficiency, refining animal feed rations, using feed additives to increase P absorption by the animal, moving manure from surplus to deficit areas, and targeting conservation practices, such as reduced tillage, buffer strips, and cover crops, to critical areas of P export from a watershed.
Nutrient regulations have been developed over the past decades to limit anthropogenic inputs of phosphorus (P) to surface waters. All of the regulations were promulgated in response to decreased water quality, which was at least partially associated with agricultural non-point source pollution. Improvements in water quality can take years, so the impacts of these regulations on water quality can not always be seen. Denmark has had nutrient management regulations aimed at achieving mass balance of P for 20 yr, and although great progress has been made, an average surplus of 11 kg P ha(-1) remains. Northern Ireland is also trying to move toward mass balance, but decreases in inorganic P fertilizer use have been undermined by an increase in the use of feed concentrates. In the Chesapeake Bay watershed, which covers several states in the USA, a variety of best management practices are starting to have an effect on P losses from agriculture, but water quality has only improved slightly. Impairment to the supply of drinking water to the City of Tulsa Oklahoma led to a lawsuit that has greatly affected the management of poultry litter in the supplying watershed. This paper discusses the different regulations that have developed in these four regions, evaluates the strategies used to prevent non-point source pollution of P, reports impacts on water quality, and looks for lessons that can be learned as we move forward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.