Elevated blood pressure (BP) and chronic kidney disease (CKD) are complex traits representing major global health problems1,2. Multiple genome-wide association studies (GWAS) identified common variants giving independent susceptibility for CKD and hypertension in the promoter of the UMOD gene3-9, encoding uromodulin, the major protein secreted in the normal urine. Despite compelling genetic evidence, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants directly increase UMOD expression in vitro and in vivo. We modeled this effect in transgenic mice and showed that uromodulin overexpression leads to salt-sensitive hypertension and to age-dependent renal lesions that are similarly observed in elderly subjects homozygous for UMOD risk variants. We demonstrate that the link between uromodulin and hypertension is caused by activation of the renal sodium co-transporter NKCC2. This very mechanism is relevant in humans, as pharmacological inhibition of NKCC2 is more effective in lowering BP in hypertensive patients homozygous for UMOD risk variants. Our findings establish a link between the genetic susceptibility to hypertension and CKD, the control of uromodulin expression and its role in a salt-reabsorbing tubular segment of the kidney. These data point to uromodulin as a novel therapeutic target to lower BP and preserve renal function.
Feingold syndrome is characterized by variable combinations of esophageal and duodenal atresias, microcephaly, learning disability, syndactyly and cardiac defect. We show here that heterozygous mutations in the gene MYCN are present in Feingold syndrome. All mutations are predicted to disrupt both the full-length protein and a new shortened MYCN isoform, suggesting that multiple aspects of early embryogenesis and postnatal brain growth in humans are tightly regulated by MYCN dosage.
Primary hypomagnesemia is a heterogeneous group of disorders characterized by renal or intestinal magnesium (Mg 2+ ) wasting, resulting in tetany, cardiac arrhythmias, and seizures. The kidney plays an essential role in maintaining blood Mg 2+ levels, with a prominent function for the Mg 2+ -transporting channel transient receptor potential cation channel, subfamily M, member 6 (TRPM6) in the distal convoluted tubule (DCT). In the DCT, Mg 2+ reabsorption is an active transport process primarily driven by the negative potential across the luminal membrane. Here, we studied a family with isolated autosomal dominant hypomagnesemia and used a positional cloning approach to identify an N255D mutation in KCNA1, a gene encoding the voltage-gated potassium (K + ) channel Kv1.1. Kv1.1 was found to be expressed in the kidney, where it colocalized with TRPM6 along the luminal membrane of the DCT. Upon overexpression in a human kidney cell line, patch clamp analysis revealed that the KCNA1 N255D mutation resulted in a nonfunctional channel, with a dominant negative effect on wild-type Kv1.1 channel function. These data suggest that Kv1.1 is a renal K + channel that establishes a favorable luminal membrane potential in DCT cells to control TRPM6-mediated Mg 2+ reabsorption.
Uromodulin is expressed exclusively in the thick ascending limb and is the most abundant protein excreted in normal urine. Variants in UMOD, which encodes uromodulin, are associated with renal function, and urinary uromodulin levels may be a biomarker for kidney disease. However, the genetic factors regulating uromodulin excretion are unknown. We conducted a meta-analysis of urinary uromodulin levels to identify associated common genetic variants in the general population. We included 10,884 individuals of European descent from three genetic isolates and three urban cohorts. Each study measured uromodulin indexed to creatinine and conducted linear regression analysis of approximately 2.5 million single nucleotide polymorphisms using an additive model. We also tested whether variants in genes expressed in the thick ascending limb associate with uromodulin levels. rs12917707, located near UMOD and previously associated with renal function and CKD, had the strongest association with urinary uromodulin levels (P,0.001). In all cohorts, carriers of a G allele of this variant had higher uromodulin levels than noncarriers did (geometric means 10.24, 14.05, and 17.67 mg/g creatinine for zero, one, or two copies of the G allele). rs12446492 in the adjacent gene PDILT (protein disulfide isomerase-like, testis expressed) also reached genome-wide significance (P,0.001). Regarding genes expressed in the thick ascending limb, variants in KCNJ1, SORL1, and CAB39 associated with urinary uromodulin levels. These data indicate that common variants in the UMOD promoter region may influence urinary uromodulin levels. They also provide insights into uromodulin biology and the association of UMOD variants with renal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.