The observation that offspring produced by the mating of close relatives are often less fit than those produced by matings between unrelated individuals (i.e., inbreeding depression) has commonly been explained in terms of the increased probability of expressing deleterious recessive alleles among inbred offspring (the partial dominance model). This model predicts that inbreeding depression should be limited in regularly inbreeding populations because the deleterious alleles that cause inbreeding depression (i.e., the genetic load) should be purged by regularly exposing these alleles to natural selection. We indirectly test the partial dominance model using four highly inbred populations of an androdioecious crustacean, the clam shrimp Eulimnadia texana. These shrimp are comprised of males and hermaphrodites, the latter capable of either self-fertilizing or mating with a male (i.e., outcrossing between hermaphrodites is impossible). Hermaphrodites are further subdivided into monogenics (produced via self-fertilization) and amphigenics (produced via self-fertilization or outcrossing). Electrophoretic evidence suggests significant differences in heterozygosity among populations, but that selfing rates were not statistically different (average s = 0.67). Additional electrophoretic analyses reveal that three previously described sex-linked loci (Fum, Idh-1, and Idh-2) are all tightly linked to each other, with crossing over on the order of 1% per generation. Although selfing rates are clearly high, we present evidence that early inbreeding depression (hatching rates, juvenile survival, and age at sexual maturity) exists in all four populations. For all of these factors, inbreeding depression was inferred by the positive correlation of multilocus heterozygosity and fitness. Cumulative inbreeding depression (8) is between 0.41 and 0.47 across all populations, which appears to be too low to limit the effects of purging via identity disequilibrium. Instead, we suggest that the maintenance of inbreeding depression in these populations is due to the observed linkage group, which we suggest contains a large number of genes including many related to fitness. Segregation of such a large linkage group would explain our observations of the predominance of amphigenic hermaphrodites in our field samples and of survival differences between monogenics and amphigenics within selfed clutches. We propose that a modified form of the overdominance model for inbreeding depression operating at the level of linkage groups maintains the observed levels of inbreeding depression in these populations even in the face of high rates of selfing.
Androdioecy is an uncommon form of reproduction in which males coexist with hermaphrodites. Androdioecy is thought to be difficult to evolve in species that regularly inbreed. The freshwater shrimp Eulimnadia texana has recently been described as both androdioecious and highly selfing and is thus anomalous. Inbreeding depression is one factor that may maintain males in these populations. Here we examine the extent of "late" inbreeding depression (after sexual maturity) in these clam shrimp using two tests: (1) comparing the fitness of shrimp varying in their levels of individual heterozygosity from two natural populations that differ in overall genetic diversity; and (2) specifically outcrossing and selfing shrimp from these same populations and comparing fitness of the resulting offspring. The effects of inbreeding differed within each population. In the more genetically diverse population, fecundity, size, and mortality were significantly reduced in inbred shrimp. In the less genetically diverse population, none of the fitness measures was significantly lowered in selfed shrimp. Combining estimates of early inbreeding depression from a previous study with current estimates of late inbreeding depression suggests that inbreeding depression is substantial (delta = 0.68) in the more diverse population and somewhat lower (delta = 0.50) in the less diverse population. However, given that males have higher mortality rates than hermaphrodites, neither estimate of inbreeding depression is large enough to account for the maintenance of males in either population by inbreeding depression alone. Thus, the stability of androdioecy in this system is likely only if hermaphrodites are unable to self-fertilize many of their own eggs when not mated to a male or if male mating success is generally high (or at least high when males are rare). Patterns of fitness responses in the two populations were consistent with the hypothesis that inbreeding depression is caused by partially recessive deleterious alleles, although a formal test of this hypothesis still needs to be conducted.
Androdioecy is an uncommon form of reproduction in which males coexist with hermaphrodites. Androdioecy is thought to be difficult to evolve in species that regularly inbreed. The freshwater shrimp Eulimnadia texana has recently been described as both androdioecious and highly selfing and is thus anomalous. Inbreeding depression is one factor that may maintain males in these populations. Here we examine the extent of ''late'' inbreeding depression (after sexual maturity) in these clam shrimp using two tests: (1) comparing the fitness of shrimp varying in their levels of individual heterozygosity from two natural populations that differ in overall genetic diversity; and (2) specifically outcrossing and selfing shrimp from these same populations and comparing fitness of the resulting offspring. The effects of inbreeding differed within each population. In the more genetically diverse population, fecundity, size, and mortality were significantly reduced in inbred shrimp. In the less genetically diverse population, none of the fitness measures was significantly lowered in selfed shrimp. Combining estimates of early inbreeding depression from a previous study with current estimates of late inbreeding depression suggests that inbreeding depression is substantial (␦ ϭ 0.68) in the more diverse population and somewhat lower (␦ ϭ 0.50) in the less diverse population. However, given that males have higher mortality rates than hermaphrodites, neither estimate of inbreeding depression is large enough to account for the maintenance of males in either population by inbreeding depression alone. Thus, the stability of androdioecy in this system is likely only if hermaphrodites are unable to self-fertilize many of their own eggs when not mated to a male or if male mating success is generally high (or at least high when males are rare). Patterns of fitness responses in the two populations were consistent with the hypothesis that inbreeding depression is caused by partially recessive deleterious alleles, although a formal test of this hypothesis still needs to be conducted.
Androdioecy (populations of males and hermaphrodites) is a rare reproductive form, being described from only a handful of plants and animals. One of these is the shrimp Eulimnadia texana, which has populations comprised of three mating types: two hermaphroditic types (monogenics and amphigenics) and males. In a recent study, the amphigenic hermaphrodites were found to be in greater abundance than that predicted from a model of this mating system. Herein, we compare the relative fitness of offspring from amphigenic and monogenic siblings, attempting to understand the greater relative abundance of the former. Populations started with offspring from selfed monogenic hermaphrodites had a net reproductive rate (R) 87% that of offspring from their amphigenic siblings. Additionally, within populations of amphigenic offspring (which included males, monogenics and amphigenics), amphigenics survived longer than monogenics. These differences help to explain the increased relative abundance of amphigenics in natural populations, but amphigenics continue to be more abundant than expected.
Androdioecy is a rare form of mating system in which species comprise males and hermaphrodites. One recently described case of androdioecy is the freshwater crustacean ELLlimnadia texana. A mathematical model of the mating system of this shrimp suggests that males and hermaphrodites should only coexist under limited circumstances. One possible factor not considered in this model would extend the conditions for coexistence: the possibility of sperm storage in the hermaphrodites. Here we use genetically marked matings between males and hermaphrodites to determine if hermaphrodites can store male sperms. Eggs were collected from hermaphrodites both in the presence of a male and after the male was removed. A total of 30 of these matings had successful hatches, but only 14 of these 30 could be used to test for sperm storage. In these 14 cases, an average of 35% of the eggs were outcrossed when males were present, but only 0.4% were outcrossed after males were removed. Thus, sperm storage by hermaphrodites was an insignificant factor in the production of offspring. These data suggest that sperm storage cannot help explain the coexistence of males and hermaphrodites in natural populations of this crustacean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.