The microdosimetry model allows concise determinations of specific energy hits within the cell critical nucleus volume to activate both protective and damage mechanisms. One or two low LET hits can result in reduction of both zero dose natural spontaneous and radiation-induced, carcinogenic causing damage. The model should be useful in comparing in vitro and in vivo broad beam to single track microbeam exposure data. The model is capable of determining, to an accuracy of +/- one specific energy hit, the minimum threshold for induction of radioprotective mechanisms--crucial to assessing the potential human benefit of adaptive response and other negative dose response behavior.
The microdosimetric model substantiates the prior observations in Part I that only several radiation-induced charged particle cell nucleus traversals are sufficient to activate adaptive response. Further however we find here that a minimum dose rate threshold is necessary. The model shows promise to provide insight into adaptive response time and dose rate behavior.
The results of the model analysis is consistent with a premise that both Bystander damage and Adaptive Response radioprotection can occur in the same cell type, derived from the same cell species. The model provides an analytical tool to biophysically study the combined effects of BE and AR.
Prior work has provided incremental phases to a microdosimetry modeling program to describe the dose response behavior of the radio-protective adaptive response effect. We have here consolidated these prior works (Leonard 2000, 2005, 2007a, 2007b, 2007c) to provide a composite, comprehensive Microdose Model that is also herein modified to include the bystander effect. The nomenclature for the model is also standardized for the benefit of the experimental cellular radio-biologist. It extends the prior work to explicitly encompass separately the analysis of experimental data that is 1.) only dose dependent and reflecting only adaptive response radio-protection, 2.) both dose and dose-rate dependent data and reflecting only adaptive response radio-protection for spontaneous and challenge dose damage, 3.) only dose dependent data and reflecting both bystander deleterious damage and adaptive response radio-protection (AR-BE model). The Appendix cites the various applications of the model. Here we have used the Microdose Model to analyze the, much more human risk significant, Elmore et al (2006) data for the dose and dose rate influence on the adaptive response radio-protective behavior of HeLa x Skin cells for naturally occurring, spontaneous chromosome damage from a Brachytherapy type 125 I photon radiation source. We have also applied the AR-BE Microdose Model to the Chromosome inversion data of Hooker et al (2004) reflecting both low LET bystander and adaptive response effects. The micro-beam facility data of Miller et al (1999), Nagasawa and Little (1999) and Zhou et al (2003) is also examined. For the Zhou et al (2003) data, we use the AR-BE model to estimate the threshold for adaptive response reduction of the bystander effect. The mammogram and diagnostic Xray induction of AR and protective BE are observed. We show that bystander damage is reduced in the similar manner as spontaneous and challenge dose damage as shown by the Azzam et al (1996) data. We cite primary unresolved questions regarding adaptive response behavior and bystander behavior. The five features of major significance provided by the Microdose Model so far are 1.) Single Specific Energy Hits initiate Adaptive Response, 2.) Mammogram and diagnostic X-rays induce a protective Bystander Effect as well as Adaptive Response radio-protection. 3.) For mammogram X-rays the Adaptive Response protection is retained at high primer dose levels. 4.) The dose range of the AR protection depends on the value of the Specific Energy per Hit, . 5.) Alpha particle induced deleterious Bystander damage is modulated by low LET radiation.
Several radiobiology mechanisms show an ability of cells to activate protective mechanisms against the deleterious effects of ionizing radiations. The most interesting with respect to possible health benefits to humans is the phenomenon of adaptive response (AR). Fundamentally AR must be shown to be operative at very low doses and dose rates experienced during human radiation environment activities. A microdosimetric model is presented which, by the use of Poisson cell nucleus hit accumulation, enables examination of the single hit range of radiation exposure where the AR radio-protection is first activated. It is found, with the model, that single charged particle tract specific energy hits to the nucleus can activate AR. Both in vitro and in vivo data reported here indicated that AR may provide a reduction in cancer-causing DNA damage, from both radiation and spontaneous events, for nuclear workers and general public diagnostic treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.