We study the wisdom of the crowd in three sequential decision-making tasks: the Balloon Analogue Risk Task (BART), optimal stopping problems, and bandit problems. We consider a behavior-based approach, using majority decisions to determine crowd behavior and show that this approach performs poorly in the BART and bandit tasks. The key problem is that the crowd becomes progressively more extreme as the decision sequence progresses, because the diversity of opinion that underlies the wisdom of the crowd is lost. We also consider model-based approaches to each task. This involves inferring cognitive models for each individual based on their observed behavior, and using these models to predict what each individual would do in any possible task situation. We show that this approach performs robustly well for all three tasks and has the additional advantage of being able to generalize to new problems for which there are no behavioral data. We discuss potential applications of the modelbased approach to real-world sequential decision problems and discuss how our approach contributes to the understanding of collective intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.