Genes conferring resistance to one of the macrolide-lincosamide-streptogramin (MLS) antibiotics may confer cross-resistance to others, because they have similar effects on bacterial protein synthesis. In Korea, over 70% of Staphylococcus aureus isolates are methicillin-resistant and erythromycin-resistant methicillin-resistant S. aureus (MRSA) is also prevalent. We investigated the frequency of MLS resistance in erythromycin-resistant S. aureus isolates. A total of 682 isolates of S. aureus were collected in a nationwide antibiotic resistance survey. Susceptibility to erythromycin, clindamycin, and quinupristin/dalfopristin was tested by disk diffusion. In all, 37% of the methicillin-susceptible S. aureus (MSSA) and 97% of the MRSA isolates were resistant to at least one of the MLS antibiotics, whereas all were susceptible to quinupristin/dalfopristin. Out of 518 strains that were resistant to erythromycin, 60 clindamycin-susceptible (30 MSSA, 30 MRSA) and 44 clindamycin-resistant isolates (14 MSSA, 30 MRSA) were selected at random from these strains. Thirteen genes related to MLS resistance were detected in these isolates by PCR. Of the 104 MSSA and MRSA strains tested, 98 harbored one or more erm gene. The most common was erm(A), with erm(C) next. But, msr(A), lnu(A), and mef(A) were rare and no resistance to streptogramin A was encountered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.