Beta-induced Alfvén eigenmode (BAE) during a strong tearing mode activity (termed as m-BAE) has been observed and investigated in HL-2A. BAE excited by energetic electrons (termed as e-BAE) has been identified both in the Ohmic and ECRH plasma. The hard x-ray spectrum detected by cadmium telluride and the non-thermal radiation measured by electron cyclotron emission are used to analyse the behaviour of the energetic electrons. Experimental results show that the e-BAE is related not only to the populations of the energetic electrons, but also their energy distribution. An interesting result about the BAEs modulated by a supersonic molecular beam and gas puffing is presented. In addition, BAEs during a sawtooth cycle are described in this paper. To assess the identification of the e-BAE and m-BAE, the generalized fishbone-like dispersion relation and magnetic-island-induced BAE dispersion relation are solved near marginal stability, respectively. Compared with experimental results, the calculation analysis shows that the observed frequencies are all close to the theoretical results.
Hydrophobic base stacking is a major contributor to DNA double-helix stability. We report the discovery of specific unstacking effects in certain semihydrophobic environments. Water-miscible ethylene glycol ethers are found to modify structure, dynamics, and reactivity of DNA by mechanisms possibly related to a biologically relevant hydrophobic catalysis. Spectroscopic data and optical tweezers experiments show that base-stacking energies are reduced while base-pair hydrogen bonds are strengthened. We propose that a modulated chemical potential of water can promote “longitudinal breathing” and the formation of unstacked holes while base unpairing is suppressed. Flow linear dichroism in 20% diglyme indicates a 20 to 30% decrease in persistence length of DNA, supported by an increased flexibility in single-molecule nanochannel experiments in poly(ethylene glycol). A limited (3 to 6%) hyperchromicity but unaffected circular dichroism is consistent with transient unstacking events while maintaining an overall average B-DNA conformation. Further information about unstacking dynamics is obtained from the binding kinetics of large thread-intercalating ruthenium complexes, indicating that the hydrophobic effect provides a 10 to 100 times increased DNA unstacking frequency and an “open hole” population on the order of 10−2 compared to 10−4 in normal aqueous solution. Spontaneous DNA strand exchange catalyzed by poly(ethylene glycol) makes us propose that hydrophobic residues in the L2 loop of recombination enzymes RecA and Rad51 may assist gene recombination via modulation of water activity near the DNA helix by hydrophobic interactions, in the manner described here. We speculate that such hydrophobic interactions may have catalytic roles also in other biological contexts, such as in polymerases.
The β-induced Alfvén eigenmode (BAE) excited by energetic electrons has been identified for the first time both in the Ohmic and electron cyclotron resonance heating plasma in HL-2A. The features of the instability, including its frequency, mode number, and propagation direction, can be observed by magnetic pickup probes. The mode frequency is comparable to that of the continuum accumulation point of the lowest frequency gap induced by the shear Alfvén continuous spectrum due to finite β effect, and it is proportional to Alfvén velocity at thermal ion β held constant. The experimental results show that the BAE is related not only with the population of the energetic electrons, but also their energy and pitch angles. The results indicate that the barely circulating and deeply trapped electrons play an important role in the mode excitation.
The experimental results of low pressure supersonic molecular beam injection (SMBI) fuelling on the HL-2A closed divertor indicate that during the period of pulsed SMBI the power density convected at the target plate surfaces was 0.4 times of that before or after the beam injection. An empirical scaling law used for the SMBI penetration depth for the HL-2A plasma was obtained. The cluster jet injection (CJI) is a new fuelling method which is based on and developed from the experiments of SMBI in the HL-1M tokamak. The hydrogen clusters are produced at liquid nitrogen temperature in a supersonic adiabatic expansion of moderate backing pressure gases into vacuum through a Laval nozzle and are measured by Rayleigh scattering. The measurement results have shown that the averaged cluster size of as large as hundreds of atoms was found at the backing pressures of more than 0.1 MPa. Multifold diagnostics gave coincidental evidence that when there was hydrogen CJI in the HL-2A plasma, a great deal of particles from the jet were deposited at a terminal area rather than uniformly ablated along the injecting path. SMB with clusters, which are like micro-pellets, will be of benefit for deeper fuelling, and its injection behaviour was somewhat similar to that of pellet injection. Both the particle penetration depth and the fuelling efficiency of the CJI were distinctly better than that of the normal SMBI under similar discharge operation. During hydrogen CJI or high-pressure SMBI, a combination of collision and radiative stopping forced the runaway electrons to cool down to thermal velocity due to such a massive fuelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.