Automatic joint detection is of vital importance for the teaching of robots before welding and the seam tracking during welding. For narrow butt joints, the traditional structured light method may be ineffective, and many existing detection methods designed for narrow butt joints can only detect their 2D position. However, for butt joints with narrow gaps and 3D trajectories, their 3D position and orientation of the workpiece surface are required. In this paper, a vision based detection method for narrow butt joints is proposed. A crosshair laser is projected onto the workpiece surface and an auxiliary light source is used to illuminate the workpiece surface continuously. Then, images with an appropriate grayscale distribution are grabbed with the auto exposure function of the camera. The 3D position of the joint and the normal vector of the workpiece surface are calculated by the combination of the 2D and 3D information in the images. In addition, the detection method is applied in a robotic seam tracking system for GTAW (gas tungsten arc welding). Different filtering methods are used to smooth the detection results, and compared with the moving average method, the Kalman filter can reduce the dithering of the robot and improve the tracking accuracy significantly.
Lack of fusion can often occur during ultra-thin sheets edge welding process, severely destroying joint quality and leading to seal failure. This paper presents a vision-based weld pool monitoring method for detecting a lack of fusion during micro plasma arc welding (MPAW) of ultra-thin sheets edge welds. A passive micro-vision sensor is developed to acquire clear images of the mesoscale weld pool under MPAW conditions, continuously and stably. Then, an image processing algorithm has been proposed to extract the characteristics of weld pool geometry from the acquired images in real time. The relations between the presence of a lack of fusion in edge weld and dynamic changes in weld pool characteristic parameters are investigated. The experimental results indicate that the abrupt changes of extracted weld pool centroid position along the weld length are highly correlated with the occurrences of lack of fusion. By using such weld pool characteristic information, the lack of fusion in MPAW of ultra-thin sheets edge welds can be detected in real time. The proposed in-process monitoring method makes the early warning possible. It also can provide feedback for real-time control and can serve as a basis for intelligent defect identification.
Increasing welding speed can promote the productivity of laser welding. However, humping defects often occur, which limits the application of this strategy. The existing explanations for the humping formation remain vague, and mitigation and suppression methods are limited. In this research, high-speed imaging experiments and numerical simulation of the high-speed laser welding process are performed. Through careful examination, the humping phenomenon is explained. At high welding speed, the high-speed melt flow caused by recoil pressure is hindered by the solidified region in the melt pool, leading to the occurrence of a swelling. The swelling then grows, forming a valley in front of the swelling under the effect of surface tension. The solidification of the valley results in the occurrence of a second swelling. This process repeats and humping defect forms. Marangoni force and viscous force also have influence on this process. In addition, it is found that adding a Tungsten Inert Gas arc behind the laser beam can effectively suppress the humping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.