ABSTRACT. In this paper, we consider a coupled system of mixed hyperbolic-parabolic type which describes the Biot consolidation model in poro-elasticity. We establish a local Carleman estimate for Biot consilidation system. Using this estimate, we prove the uniqueness and a Hölder stability in determining on the one hand a physical parameter arising in connection with secondary consolidation effects λ * and on the other hand the two spatially varying density by a single measurement of solution over ω × (0, T ), where T > 0 is a sufficiently large time and a suitable subbdomain ω satisfying ∂ω ⊃ ∂Ω.
In this paper, we study the global stability in determination of a coefficient in the transmission wave equation from data of the solution in a subboundary over a time interval. Providing regular initial data, we prove a hölder stability estimate in the inverse problem with a single measurement. Moreover, the exponent in the stability estimate depends on the regularity of initial data.
International audience
Dans ce papier, on a prouvé une estimation de stabilité de type Höldérienne pour un problème inverse de détermination du terme source de l'équation de la chaleur à l'aide d'une inégalité de Carleman pour un système d'équations hyperbolique-parabolique couplé. ABSTRACT. In this paper we consider a coupled system of mixed hyperbolic-parabolic type which describes the Biot consolidation model in poro-elasticity. Using a local Carleman estimate for a coupled hyperbolic-parabolic system, we prove the uniqueness and a Hölder stability in determining the heat source by a single measurement of solution over ω × (0, T), where T > 0 is a sufficiently large time and a suitable subbdomain ω ⊂ Ω such that ∂ω ⊃ ∂Ω. MOTS-CLÉS : Problème inverse, estimation de Carleman, système couplet
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.