Turbulence-induced refraction effects to lower hybrid (LH) wave propagation and current drive are studied using synthetic scrape-off layer (SOL) blob/filament fields. A synthetic 3D, field-following, blob turbulence model is implemented in the ray-tracing/Fokker-Planck (RTFP) codes GENRAY/CQL3D. In Alcator C-Mod, the blob field is shown to significantly affect LH ray-trajectories, leading to increased on-axis damping and smoother current profiles. This effect depends on the average blob size and amplitude. In addition, the diffusion of ray-trajectories in phase-space caused by turbulence increases the robustness of the RTFP model. A modified N | | launch spectrum, acting as a proxy for parametric decay instability (PDI) effects, is included in simulations with the blob model. A synergy between the modified launch spectrum and turbulence-induced refraction results in synthetic hard x-ray profiles that agree with experiment. Lastly, the blob model is used to predict the effect of SOL turbulence on DIII-D high-field side (HFS) LH launch. Assuming low turbulence amplitude in the HFS SOL (∼5%), turbulence-induced refraction is predicted to have little effect on current drive efficiency.
The interaction of radio-frequency (RF) waves with edge turbulence modifies the incident wave spectrum, and can significantly affect RF heating and current drive in tokamaks. Previous lower hybrid (LH) scattering models have either used the weak-turbulence approximation, or treated more realistic, filamentary turbulence in the ray tracing limit. In this work, a new model is introduced which retains full-wave effects of RF scattering in filamentary turbulence. First, a Mie-scattering technique models the interaction of an incident wave with a single Gaussian filament. Next, an effective differential scattering width is derived for a statistical ensemble of filaments. Lastly, a Markov chain solves for the transmitted wave spectrum in slab geometry. This model is applied to LH launching for current drive. The resulting wave spectrum is asymmetrically broadened in angular wavenumber space. This asymmetry is not accounted for in previous LH scattering models. The modified wave spectrum is coupled to a ray tracing/Fokker–Planck solver (GENRAY/CQL3D) to study its impact on current drive. The resulting current profile is greatly altered, and there is significant increase in the on-axis current and decrease in the off-axis peaks. This is attributed to a portion of the modified wave spectrum that is strongly dampened on-axis during the first pass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.