Modafinil is a wake promoting drug useful for treatment of excessive sleepiness in narcolepsy, shift work sleep disorder, and obstructive sleep apnea. Numerous other indications, including treatment of fatigue in multiple sclerosis, have been suggested but are still debated.14 The neurobiochemical effects of modafinil are complex and not fully understood. 15 The primary effects seem to involve inhibiting reuptake by dopamine and norepinephrine transporters. Furthermore, it is known to have some effects on serotonin, glutamate, gamma-aminobutyric acid, orexin, and histamine systems, but it is unknown Background and Purpose-Poststroke fatigue is common and reduces quality of life. Current evidence for intervention is limited, and this is the first placebo-controlled trial to investigate treatment of poststroke fatigue with the wakefulness promoting drug modafinil. Methods-The trial was randomized, double-blinded, and placebo-controlled. Patients were treated with 400-mg modafinil or placebo for 90 days. Assessments were done at inclusion, 30, 90, and 180 days. The primary end point was fatigue at 90 days measured by the Multidimensional Fatigue Inventory-20 general fatigue domain. Secondary end points included the Fatigue Severity Scale, the Montreal Cognitive Assessment, the modified Rankin Scale and the Stroke-specific quality of Life questionnaire. Adult patients with a recent stroke achieving a score of ≥12 on the Multidimensional Fatigue Inventory-20 general fatigue domain were consecutively included. Exclusion criteria were severe cognitive disabilities and contraindications for modafinil treatment. Results-One thousand one hundred twenty-one patients with stroke were screened and 41 patients included, 21 received modafinil. The primary end point, the Multidimensional Fatigue Inventory-20 general fatigue score, did not differ between groups. Patients in the modafinil group obtained better scores on the Fatigue Severity Scale (P=0.02) and in some subscales of the stroke-specific quality of life questionnaire (0.001
Isolated complex II deficiency is a rare cause of mitochondrial disease and bi-allelic mutations in SDHB have been identified in only a few patients with complex II deficiency and a progressive neurological phenotype with onset in infancy. On the other hand, heterozygous SDHB mutations are a well-known cause of familial paraganglioma/pheochromocytoma and renal cell cancer. Here, we describe two additional patients with respiratory chain deficiency due to bi-allelic SDHB mutations. The patients' clinical, neuroradiological, and biochemical phenotype is discussed according to current knowledge on complex II and SDHB deficiency and is well in line with previously described cases, thus confirming the specific neuroradiological presentation of complex II deficiency that recently has emerged. The patients' genotype revealed one novel SDHB mutation, and one SDHB mutation, which previously has been described in heterozygous form in patients with familial paraganglioma/pheochromocytoma and/or renal cell cancer. This is only the second example in the literature where one specific SDHx mutation is associated with both recessive mitochondrial disease in one patient and familial paraganglioma/pheochromocytoma in others. Due to uncertainties regarding penetrance of different heterozygous SDHB mutations, we argue that all heterozygous SDHB mutation carriers identified in relation to SDHB-related leukoencephalopathy should be referred to relevant surveillance programs for paraganglioma/pheochromocytoma and renal cell cancer. The diagnosis of complex II deficiency due to SDHB mutations therefore raises implications for genetic counselling that go beyond the recurrence risk in the family according to an autosomal recessive inheritance.
The hypomyelinating leukodystrophies (HMLs) encompass the X-linked Pelizaeus-Merzbacher disease (PMD) caused by PLP1 mutations and known as the classical form of HML as well as Pelizaeus-Merzbacher-like disease (PMLD) (Online Mendelian Inheritance in Man [OMIM] 608804 and OMIM 260600) due to GJC2 mutations. In addition, mutations in at least 10 other genes are known to cause HMLs. In 2008, an Israeli family with clinical and neuroimaging findings similar to those found in PMD was reported. The patients were found to have a homozygous missense mutation in HSPD1, encoding the mitochondrial heat-shock protein 60 (Hsp60), and the disorder was defined as the autosomal recessive mitochondrial Hsp60 chaperonopathy (MitCHAP-60) disease. We here report the first case of this severe neurodegenerative disease since it was first described. Given the fact that the families carried the same mutation our patient probably belongs to the same extended family as the Israeli family. In conclusion, the MitCHAP-60 disease should be considered as a rare differential diagnosis in HML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.