The human immunodeficiency virus type 1 (HIV-1) protein Tat is known to be released from HIV-1-infected cells. We show that micromolar concentrations of Tat depolarized young rat and adult human neurons. In addition, Tat, at similar concentrations, was toxic to human fetal neurons in culture. Tat-induced responses were insensitive to the Na+ channel blocker tetrodotoxin, suggesting a direct effect of Tat on neurons. Tat-induced depolarizations and cytotoxicity were blocked by the excitatory amino acid antagonist kynurenate. The N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosphonovalerate had little effect on Tat-induced depolarizations but did provide protection from Tat neurotoxicity. These results suggest that Tat, released from HIV-1-infected cells, may be an important mediator of neurotoxicity observed in HIV-1 encephalopathy.
Tat is an 86-to 104-amino-acid viral protein that activates human immunodeficiency virus type 1 expression, modifies several cellular functions, and causes neurotoxicity. Here, we determined the extent to which peptide fragments of human immunodeficiency virus type 1 BRU Tat 1-86 produced neurotoxicity, increased levels of intracellular calcium ([Ca 2؉ ] i), and affected neuronal excitability. Tat 31-61 but not Tat 48-85 dose dependently increased cytotoxicity and levels of [Ca 2؉ ] i in cultured human fetal brain cells. Similarly, Tat 31-61 but not Tat 48-85 depolarized rat hippocampal CA1 neurons in slices of rat brain. The neurotoxicity and increases in [Ca 2؉ ] i could be significantly inhibited by non-N-methyl-D-aspartate excitatory amino acid receptor antagonists. Shorter 15-mer peptides which overlapped by 10 amino acids each and which represented the entire sequence of Tat 1-86 failed to produce any measurable neurotoxicity. Although it remains to be determined if Tat acts directly on neurons and/or indirectly via glial cells, these findings do suggest that Tat neurotoxicity is conformationally dependent, that the active site resides within the first exon of Tat between residues 31 to 61, and that these effects are mediated at least in part by excitatory amino acid receptors.
The ureteral stent is an invaluable urological tool and its indications are evolving as are new stent technologies to improve patient care and comfort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.