Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I–IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab.
Highlights d Detailed, large-scale mechanistic model of cancer-related signaling pathways d Speedup of over 10,000-fold enables data-driven modeling at unprecedented scales d Pronounced parameter uncertainties do not imply pronounced prediction uncertainties d Mechanistic models can predict response to drug combinations from single drug data
Abstract. The centriole pair in animals shows duplication and structural maturation at specific cell cycle points. In G1, a cell has two centrioles. One of the centrioles is mature and was generated at least two cell cycles ago. The other centriole was produced in the previous cell cycle and is immature. Both centrioles then nucleate one procentriole each which subsequently elongate to full-length centrioles, usually in S or G2 phase. However, the point in the cell cycle at which maturation of the immature centriole occurs is open to question. Furthermore, the molecular events underlying this process are entirely unknown. Here, using monoclonal and polyclonal antibody approaches, we describe for the first time a molecular marker which localizes exclusively to one centriole of the centriolar pair and provides biochemical evidence that the two centrioles are different. Moreover, this 96-kD protein, which we name Cenexin (derived from the Latin, senex for "old man," and Cenexin for centriole) defines very precisely the mature centriole of a pair and is acquired by the immature centriole at the G2/M transition in prophase. Thus the acquisition of Cenexin marks the functional maturation of the centriole and may indicate a change in centriolar potential such as its ability to act as a basal body for axoneme development or as a congregating site for microtubule-organizing material.
The cloning of asl offers new insight into the molecular composition of Drosophila centrioles and a possible model for the role of its human homolog. In addition, the phenotype of asl-deficient flies reveals that a functional centrosome is required for Drosophila embryo development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.