The electronic ground states of pheophytin cofactors potentially involved in symmetry breaking between the A and B branch for electron transport in the bacterial photosynthetic reaction center have been investigated through a characterization of the electron densities at individual atomic positions of pheophytin a from 13C chemical shift data. A new experimental approach involving multispin 13C labeling and 2-D NMR is presented. Bacterial photosynthetic reaction centers of Rhodobacter sphaeroides R26 were reconstituted with uniformly 13C biosynthetically labeled (plant) Pheo a in the two pheophytin binding sites. From the multispin labeled samples 1-D and 2-D solid-state 13C magic angle spinning NMR spectra could be obtained and used to characterize the pheophytin a ground state in the Rb. sphaeroides R26 RCs, i.e., without a necessity for time-consuming selective labeling strategies involving organic synthesis. From the 2-D solid state 13C-13C correlation spectra collected with spinning speeds of 8 and 10 kHz, with mixing times of 1 and 0.8 ms, many 13C resonances of the [U-13C]Pheo a molecules reconstituted in the RCs could be assigned in a single set of experiments. Parts of the pheophytins interacting with the protein, at the level of 13C shifts modified by binding, could be identified. Small reconstitution shifts are detected for the 17(2) side chain of ring IV. In contrast, there is no evidence for electrostatic differences between the two Pheo a, for instance, due to a possibly strong selective electrostatic interaction with Glu L104 on the active branch. The protonation states appear the same, and the NMR suggests a strong overall similarity between the ground states of the two Pheo a, which is of interest in view of the asymmetry of the electron transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.