We recently discovered the existence of the oxytocin͞oxytocin receptor (OT͞OTR) system in the heart. Activation of cardiac OTR stimulates the release of atrial natriuretic peptide (ANP), which is involved in regulation of blood pressure and cell growth. Having observed elevated OT levels in the fetal and newborn heart at a stage of intense cardiomyocyte hyperplasia, we hypothesized a role for OT in cardiomyocyte differentiation. We used mouse P19 embryonic stem cells to substantiate this potential role. P19 cells give rise to the formation of cell derivatives of all germ layers. Treatment of P19 cell aggregates with dimethyl sulfoxide (DMSO) induces differentiation to cardiomyocytes. In this work, P19 cells were allowed to aggregate from day 0 to day 4 in the presence of 0.5% DMSO, 10 ؊7 M OT and͞or 10 ؊7 M OT antagonist (OTA), and then cultured in the absence of these factors until day 14. OT alone stimulated the production of beating cell colonies in all 24 independently growing cultures by day 8 of the differentiation protocol, whereas the same result was obtained in cells induced by DMSO only after 12 days. Cells induced with OT exhibited increased ANP mRNA, had abundant mitochondria (i.e., they strongly absorbed rhodamine 123), and expressed sarcomeric myosin heavy chain and dihydropyridine receptor-␣1, confirming a cardiomyocyte phenotype. In addition, OT as well as DMSO increased OTR protein and OTR mRNA, and OTA completely inhibited the formation of cardiomyocytes in OT-and DMSO-supplemented cultures. These results suggest that the OT͞OTR system plays an important role in cardiogenesis by promoting cardiomyocyte differentiation.
Oxytocin (OT) is involved in the regulation of energy metabolism and in the activation of cardioprotective mechanisms. We evaluated whether chronic treatment with OT could prevent the metabolic and cardiac abnormalities associated with diabetes and obesity using the db/db mice model. Four-week-old male db/db mice and their lean nondiabetic littermates (db/+) serving as controls were treated with OT (125 ng/kg · h) or saline vehicle for a period of 12 weeks. Compared with db/+ mice, the saline-treated db/db mice developed obesity, hyperglycemia, and hyperinsulinemia. These mice also exhibited a deficient cardiac OT/natriuretic system and developed systolic and diastolic dysfunction resulting from cardiomyocyte hypertrophy, fibrosis, and apoptosis. These abnormalities were associated with increased reactive oxygen species (ROS) production, inflammation, and suppressed 5'-adenosine monophosphate kinase signaling pathway. The db/db mice displayed reduced serum levels of adiponectin and adipsin and elevated resistin. OT treatment increased circulating OT levels, significantly reduced serum resistin, body fat accumulation (19%; P<.001), fasting blood glucose levels by (23%; P<.001), and improved glucose tolerance and insulin sensitivity. OT also normalized cardiac OT receptors, atrial natriuretic peptide, and brain natriuretic peptide, expressions and prevented systolic and diastolic dysfunction as well as cardiomyocyte hypertrophy, fibrosis, and apoptosis. Furthermore, OT reduced cardiac oxidative stress and inflammation and normalized the 5'-adenosine monophosphate-activated protein kinase signaling pathway. The complete normalization of cardiac structure and function by OT treatment in db/db mice contrasted with only partial improvement of hyperglycemia and hyperinsulinemia. These results indicate that chronic treatment with OT partially improves glucose and fat metabolism and reverses abnormal cardiac structural remodeling, preventing cardiac dysfunction in db/db mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.