Accurate measurement of temperatures with low power consumption with the highest sensitivity and smallest possible elements is still a challenge. The thermal, electrical, and mechanical properties of carbon nanotubes (CNTs) have suggested that their use as a very sensitive sensing element will allow the creation of different sensors, far superior to other devices of similar size. In this paper, we present a short review of different constructive designs of CNTs based resistive sensors used for temperature measurement, available in literature, assembled using different processes, such as self-assembly, drop-casting from a solution, thin films obtained by gluing, printing, spraying, or filtration over a special membrane. As particular cases, temperature sensors obtained from CNT-polymer nanocomposite structures, CNTs filled with uniformly dispersed Fe3O4 nanoparticles or with gallium, and carbon nanotube wires (CNWs) hybrids are presented. Using these preparation procedures, mixtures of CNTs with different dimensions and chirality, as well as with a variable level of impurities and structural defects, can be produced. The sensors’ performance charts are presented, highlighting a number of aspects regarding the applicability of CNT structures for temperature measurement ranging from cryogenic temperatures to high temperatures, the limitations they have, their characteristics and advantages, as well as the special situations that may arise given the particular structure of these new types of materials, together with basic relationships and parameters for CNTs characterization. Further research will be required to develop the techniques of manipulating and depositing individual CNTs on supports and electrodes for the development of temperature sensors.
We present an investigation consisting of single walled carbon nanotubes (SWCNTs) based cryogenic temperature sensors, capable of measuring temperatures in the range of 2–77 K. Carbon nanotubes (CNTs) due to their extremely small size, superior thermal and electrical properties have suggested that it is possible to create devices that will meet necessary requirements for miniaturization and better performance, by comparison to temperature sensors currently available on the market. Starting from SWCNTs, as starting material, a resistive structure was designed. Employing dropcast method, the carbon nanotubes were deposited over pairs of gold electrodes and in between the structure electrodes from a solution. The procedure was followed by an alignment process between the electrodes using a dielectrophoretic method. Two sensor structures were tested in cryogenic field down to 2 K, and the resistance was measured using a standard four-point method. The measurement results suggest that, at temperatures below 20 K, the temperature coefficient of resistance average for sensor 1 is 1.473%/K and for sensor 2 is 0.365%/K. From the experimental data, it can be concluded that the dependence of electrical resistance versus temperature can be approximated by an exponential equation and, correspondingly, a set of coefficients are calculated. It is further concluded that the proposed approach described here offers several advantages, which can be employed in the fabrication of a microsensors for cryogenic applications.
The electrical response of sulfonated single-walled carbon nanotubes (SWCNTs) to NO and NO2, for gas sensing applications, at room temperature, is reported in this work. A specific configuration based on SWCNT deposition between double pair configuration gold electrodes, supported on a substrate, was considered for the sensing device; employed characterization technique where FTIR and SEM. The experimental results showed a p-type response of the sulfonated SWCNTs, with decrease in resistance, under exposure to NO gas (40–200 ppb) and NO2 (40–200 ppb). Also, the sensor responses to successive exposures at NO2 800 ppb together with investigation of long term stability, at 485 ppb for NO, are reported. The reaction mechanism in case of NO and NO2 detection with sulfonated SWCNTs is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.