We propose an automatic four-chamber heart segmentation system for the quantitative functional analysis of the heart from cardiac computed tomography (CT) volumes. Two topics are discussed: heart modeling and automatic model fitting to an unseen volume. Heart modeling is a nontrivial task since the heart is a complex nonrigid organ. The model must be anatomically accurate, allow manual editing, and provide sufficient information to guide automatic detection and segmentation. Unlike previous work, we explicitly represent important landmarks (such as the valves and the ventricular septum cusps) among the control points of the model. The control points can be detected reliably to guide the automatic model fitting process. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3-D CT volumes. We formulate the segmentation as a two-step learning problem: anatomical structure localization and boundary delineation. In both steps, we exploit the recent advances in learning discriminative models. A novel algorithm, marginal space learning (MSL), is introduced to solve the 9-D similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3-D shape through learning-based boundary delineation. The proposed method has been extensively tested on the largest dataset (with 323 volumes from 137 patients) ever reported in the literature. To the best of our knowledge, our system is the fastest with a speed of 4.0 s per volume (on a dual-core 3.2-GHz processor) for the automatic segmentation of all four chambers.
Fractional flow reserve (FFR) is a functional index quantifying the severity of coronary artery lesions and is clinically obtained using an invasive, catheter-based measurement. Recently, physics-based models have shown great promise in being able to noninvasively estimate FFR from patient-specific anatomical information, e.g., obtained from computed tomography scans of the heart and the coronary arteries. However, these models have high computational demand, limiting their clinical adoption. In this paper, we present a machine-learning-based model for predicting FFR as an alternative to physics-based approaches. The model is trained on a large database of synthetically generated coronary anatomies, where the target values are computed using the physics-based model. The trained model predicts FFR at each point along the centerline of the coronary tree, and its performance was assessed by comparing the predictions against physics-based computations and against invasively measured FFR for 87 patients and 125 lesions in total. Correlation between machine-learning and physics-based predictions was excellent (0.9994, P < 0.001), and no systematic bias was found in Bland-Altman analysis: mean difference was -0.00081 ± 0.0039. Invasive FFR ≤ 0.80 was found in 38 lesions out of 125 and was predicted by the machine-learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The correlation was 0.729 (P < 0.001). Compared with the physics-based computation, average execution time was reduced by more than 80 times, leading to near real-time assessment of FFR. Average execution time went down from 196.3 ± 78.5 s for the CFD model to ∼2.4 ± 0.44 s for the machine-learning model on a workstation with 3.4-GHz Intel i7 8-core processor.
Guiding image segmentation with edge information is an often employed strategy in low level computer vision. To improve the trade-off between the sensitivity of homogeneous region delineation and the oversegmentation of the image, we have incorporated a recently proposed edge magnitudekonjidence map into a color image segmenter based on the mean shift procedure. The new method can recover regions with weak but sharp boundaries and thus can provide a more accurate input for high level interpretation modules. The Edge Detection and Image SegmentatiON (EDISON) system, available for download, iniplemerits the proposed technique andprovides a complete toolbox for discontinuity preserving filtering, segmentation and edge detection.
Automated quantification of abnormalities associated with COVID-19 from chest CT could help clinicians evaluate the disease and assess its severity and progression. This study proposes measures of disease severity and a deep learning and deep reinforcement-based method to compute them.
ÐComputing the weighted average of the pixel values in a window is a basic module in many computer vision operators. The process is reformulated in a linear vector space and the role of the different subspaces is emphasized. Within this framework wellknown artifacts of the gradient-based edge detectors, such as large spurious responses can be explained quantitatively. It is also shown, that template matching with a template derived from the input data is meaningful since it provides an independent measure of confidence in the presence of the employed edge model. The widely used three-step edge detection procedure: gradient estimation, nonmaxima suppression, hysteresis thresholding; is generalized to include the information provided by the confidence measure. The additional amount of computation is minimal and experiments with several standard test images show the ability of the new procedure to detect weak edges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.