One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields.
Current technologies have become a source of omnipresent electromagnetic pollution from generated electromagnetic fields and resulting electromagnetic radiation. In many cases this pollution is much stronger than any natural sources of electromagnetic fields or radiation. The harm caused by this pollution is still open to question since there is no clear and definitive evidence of its negative influence on humans. This is despite the fact that extremely low frequency electromagnetic fields were classified as potentially carcinogenic. For these reasons, in recent decades a significant growth can be observed in scientific research in order to understand the influence of electromagnetic radiation on living organisms. However, for this type of research the appropriate selection of relevant model organisms is of great importance. It should be noted here that the great majority of scientific research papers published in this field concerned various tests performed on mammals, practically neglecting lower organisms. In that context the objective of this paper is to systematise our knowledge in this area, in which the influence of electromagnetic radiation on lower organisms was investigated, including bacteria, E. coli and B. subtilis, nematode, Caenorhabditis elegans, land snail, Helix pomatia, common fruit fly, Drosophila melanogaster, and clawed frog, Xenopus laevis.
Immature gilts were administered per os with zearalenone (ZEN) at 40 μg/kg BW (group Z, n = 9), deoxynivalenol (DON) at 12 μg/kg BW (group D, n = 9), a mixture of ZEN and DON (group M, n = 9) or a placebo (group C, n = 9) over a period of six weeks. The pigs were sacrificed after one, three, or six weeks of the treatment (12 pigs per each time-point). Histological investigations revealed an increase in the mucosal thickness and the crypt depth as well as a decrease in the ratio of the villus height to the crypt depth in groups D and M after six weeks of exposure to the mycotoxins. The number of goblet cells in the villus epithelium was elevated in groups Z and M after one week and in group D after three weeks. The administration of ZEN increased the lymphocyte number in the villus epithelium after 1 week and the plasma cell quantity in the lamina propria after one, three, and six weeks of the experiment. DON treatment resulted in an increase in the lymphocyte number in the villus epithelium and the lamina propria after six weeks, and in the plasma cell quantity in the lamina propria after one, three, and six weeks of exposure. In group M, lymphocyte counts in the epithelium and the lamina propria increased significantly after six weeks. Neither mycotoxin induced significant adverse changes in the ultrastructure of the mucosal epithelium and the lamina propria or in the intestinal barrier permeability. Our results indicate that immune cells are the principal target of low doses of ZEN and DON.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.