Human phonation does not always involve symmetric motions of the two vocal folds. Asymmetric motions can create slanted or oblique glottal angles. This study reports intraglottal pressure profiles for a Plexiglas model of the larynx with a glottis having a 10-degree divergence angle and either a symmetric orientation or an oblique angle of 15 degrees. For the oblique glottis, one side was divergent and the other convergent. The vocal fold surfaces had 14 pressure taps. The minimal glottal diameter was held constant at 0.04 cm. Results indicated that for either the symmetric or oblique case, the pressure profiles were different on the two sides of the glottis except for the symmetric geometry for a transglottal pressure of 3 cm H2O. For the symmetric case, flow separation created lower pressures on the side where the flow stayed attached to the wall, and the largest pressure differences between the two sides of the channel were 5%-6% of the transglottal pressure. For the oblique case, pressures were lower on the divergent glottal side near the glottal entry and exit, and the cross-channel pressures at the glottis entrance differed by 27% of the transglottal pressure. The empirical pressure distributions were supported by computational results. The observed aerodynamic asymmetries could be a factor contributing to normal jitter values and differences in vocal fold phasing.
Flow visualization with smoke particles illuminated by a laser sheet was used to obtain a qualitative description of the air flow structures through a dynamically similar 7.5x symmetric static scale model of the human larynx (divergence angle of 10 deg, minimal diameter of 0.04 cm real life). The acoustic level downstream of the vocal folds was measured by using a condenser microphone. False vocal folds (FVFs) were included. In general, the glottal flow was laminar and bistable. The glottal jet curvature increased with flow rate and decreased with the presence of the FVFs. The glottal exit flow for the lowest flow rate showed a curved jet which remained laminar for all geometries. For the higher flow rates, the jet flow patterns exiting the glottis showed a laminar jet core, transitioning to vortical structures, and leading spatially to turbulent dissipation. This structure was shortened and tightened with an increase in flow rate. The narrow FVF gap lengthened the flow structure and reduced jet curvature via acceleration of the flow. These results suggest that laryngeal flow resistance and the complex jet flow structure exiting the glottis are highly affected by flow rate and the presence of the false vocal folds. Acoustic consequences are discussed in terms of the quadrupole- and dipole-type sound sources due to ordered flow structures.
A Plexiglas model of the larynx, having a uniform duct shape and minimal diameter of 0.04 cm, was used to obtain wall pressure distributions resulting from internal airflow. Both a symmetric glottis (obliquity of 0 degrees) and a slanted glottis (obliquity of 20 degrees) were used. The oblique glottis (i.e., a glottis that slants relative to the axial tracheal flow) is present in both normal and abnormal phonation. Obliquity has been shown to create unequal cross-channel pressures on the vocal fold surfaces [Scherer et al., J. Acoust. Soc. Am. 109, 1616 (2001)], and the study here continues this line of research. For the oblique glottis, one side was divergent and the other convergent. Transglottal pressures from 3 to 15 cm H2O using constant airflows were used. Results indicated that the pressure distributions on the two sides of the glottis were essentially equal for the symmetric uniform case (pressures differed slightly near the exit due to asymmetric flow downstream of the glottis). For the oblique glottis, the pressures on the vocal fold surfaces at glottal entry differed by 21.4% of the transglottal pressure, suggesting that this oblique glottis creates upstream glottal pressures that may influence out-of-phase motion of the two vocal folds.
This study used a symmetric, three-dimensional, physical model of the larynx called M6 in which the transverse plane of the glottis is formed by sinusoidal arcs for each medial vocal fold surface, creating a maximum glottal width of 0.16 cm at the location of the minimal glottal area. Three glottal angles were studied: convergent 10°, uniform ͑0°͒, and divergent 10°. Fourteen pressure taps were incorporated in the upstream-downstream direction on the vocal fold surface at three coronal locations, at the one-fourth, one-half, and three-fourths distances in the anterior-posterior direction of the glottis. The computational software FLUENT was used to compare and augment the data for these cases. Near the glottal entrance, the pressures were similar across the three locations for the uniform case; however, for the convergent case the middle pressure distribution was lower by 4% of the transglottal pressure, and lower by about 2% for the divergent case. Also, there were significant secondary velocities toward the center from both the anterior commissure and vocal process regions ͑of as much as approximately 10% of the axial velocities͒. Thus, the three dimensionality created relatively small pressure gradients and significant secondary velocities anteriorly-posteriorly within the glottis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.