<div> <div> <p>The emergence of the 2019 novel coronavirus (COVID-19), for which there is no vaccine or any known effective treatment created a sense of urgency for novel drug discovery approaches. One of the most important COVID-19 protein targets is the 3C-like protease for which the crystal structure is known. Most of the immediate efforts are focused on drug repurposing of known clinically-approved drugs and virtual screening for the molecules available from chemical libraries that may not work well. For example, the IC50 of lopinavir, an HIV protease inhibitor, against the 3C-like protease is approximately 50 micromolar, which is far from ideal. In an attempt to address this challenge, on January 28th, 2020 Insilico Medicine decided to utilize a part of its generative chemistry pipeline to design novel drug-like inhibitors of COVID-19 and started generation on January 30th. It utilized three of its previously validated generative chemistry approaches: crystal-derived pocked-based generator, homology modelling-based generation, and ligand-based generation. Novel druglike compounds generated using these approaches were published at <a href="http://www.insilico.com/ncov-sprint/">www.insilico.com/ncov-sprint/</a>. Several molecules will be synthesized and tested using the internal resources; however, the team is seeking collaborations to synthesize, test, and, if needed, optimize the published molecules. <br></p> </div> </div>
<div> <div> <p>The emergence of the 2019 novel coronavirus (COVID-19), for which there is no vaccine or any known effective treatment created a sense of urgency for novel drug discovery approaches. One of the most important COVID-19 protein targets is the 3C-like protease for which the crystal structure is known. Most of the immediate efforts are focused on drug repurposing of known clinically-approved drugs and virtual screening for the molecules available from chemical libraries that may not work well. For example, the IC50 of lopinavir, an HIV protease inhibitor, against the 3C-like protease is approximately 50 micromolar, which is far from ideal. In an attempt to address this challenge, on January 28th, 2020 Insilico Medicine decided to utilize a part of its generative chemistry pipeline to design novel drug-like inhibitors of COVID-19 and started generation on January 30th. It utilized three of its previously validated generative chemistry approaches: crystal-derived pocked-based generator, homology modelling-based generation, and ligand-based generation. Novel druglike compounds generated using these approaches were published at <a href="http://www.insilico.com/ncov-sprint/">www.insilico.com/ncov-sprint/</a>. Several molecules will be synthesized and tested using the internal resources; however, the team is seeking collaborations to synthesize, test, and, if needed, optimize the published molecules. <br></p> </div> </div>
Chemistry42 is a software platform for de novo small molecule design and optimization that integrates Artificial Intelligence (AI) techniques with computational and medicinal chemistry methodologies. Chemistry42 efficiently generates novel molecular structures with optimized properties validated in both in vitro and in vivo studies and is available through licensing or collaboration. Chemistry42 is the core component of Insilico Medicine's Pharma.ai drug discovery suite. Pharma.ai also includes PandaOmics for target discovery and multiomics data analysis, and inClinico�a data-driven multimodal forecast of a clinical trial's probability of success (PoS). In this paper, we demonstrate how the platform can be used to efficiently find novel molecular structures against DDR1 and CDK20.
<div> <div> <div> <p>The emergence of the 2019 novel coronavirus (2019-nCoV), for which there is no vaccine or any known effective treatment created a sense of urgency for novel drug discovery approaches. One of the most important 2019-nCoV protein targets is the 3C-like protease for which the crystal structure is known. Most of the immediate efforts are focused on drug repurposing of known clinically-approved drugs and virtual screening for the molecules available from chemical libraries that may not work well. For example, the IC50 of lopinavir, an HIV protease inhibitor, against the 3C-like protease is approximately 50 micromolar. In an attempt to address this challenge, on January 28th, 2020 Insilico Medicine decided to utilize a part of its generative chemistry pipeline to design novel drug-like inhibitors of 2019-nCoV and started generation on January 30th. It utilized three of its previously validated generative chemistry approaches: crystal-derived pocked- based generator, homology modelling-based generation, and ligand-based generation. Novel druglike compounds generated using these approaches are being published at www.insilico.com/ncov-sprint/ and will be continuously updated. Several molecules will be synthesized and tested using the internal resources; however, the team is seeking collaborations to synthesize, test, and, if needed, optimize the published molecules. </p> </div> </div> </div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.