Modern computational approaches and machine learning techniques accelerate the invention of new drugs. Generative models can discover novel molecular structures within hours, while conventional drug discovery pipelines require months of work. In this article, we propose a new generative architecture, entangled conditional adversarial autoencoder, that generates molecular structures based on various properties, such as activity against a specific protein, solubility, or ease of synthesis. We apply the proposed model to generate a novel inhibitor of Janus kinase 3, implicated in rheumatoid arthritis, psoriasis, and vitiligo. The discovered molecule was tested in vitro and showed good activity and selectivity.
<div> <div> <p>The emergence of the 2019 novel coronavirus (COVID-19), for which there is no vaccine or any known effective treatment created a sense of urgency for novel drug discovery approaches. One of the most important COVID-19 protein targets is the 3C-like protease for which the crystal structure is known. Most of the immediate efforts are focused on drug repurposing of known clinically-approved drugs and virtual screening for the molecules available from chemical libraries that may not work well. For example, the IC50 of lopinavir, an HIV protease inhibitor, against the 3C-like protease is approximately 50 micromolar, which is far from ideal. In an attempt to address this challenge, on January 28th, 2020 Insilico Medicine decided to utilize a part of its generative chemistry pipeline to design novel drug-like inhibitors of COVID-19 and started generation on January 30th. It utilized three of its previously validated generative chemistry approaches: crystal-derived pocked-based generator, homology modelling-based generation, and ligand-based generation. Novel druglike compounds generated using these approaches were published at <a href="http://www.insilico.com/ncov-sprint/">www.insilico.com/ncov-sprint/</a>. Several molecules will be synthesized and tested using the internal resources; however, the team is seeking collaborations to synthesize, test, and, if needed, optimize the published molecules. <br></p> </div> </div>
<div> <div> <p>The emergence of the 2019 novel coronavirus (COVID-19), for which there is no vaccine or any known effective treatment created a sense of urgency for novel drug discovery approaches. One of the most important COVID-19 protein targets is the 3C-like protease for which the crystal structure is known. Most of the immediate efforts are focused on drug repurposing of known clinically-approved drugs and virtual screening for the molecules available from chemical libraries that may not work well. For example, the IC50 of lopinavir, an HIV protease inhibitor, against the 3C-like protease is approximately 50 micromolar, which is far from ideal. In an attempt to address this challenge, on January 28th, 2020 Insilico Medicine decided to utilize a part of its generative chemistry pipeline to design novel drug-like inhibitors of COVID-19 and started generation on January 30th. It utilized three of its previously validated generative chemistry approaches: crystal-derived pocked-based generator, homology modelling-based generation, and ligand-based generation. Novel druglike compounds generated using these approaches were published at <a href="http://www.insilico.com/ncov-sprint/">www.insilico.com/ncov-sprint/</a>. Several molecules will be synthesized and tested using the internal resources; however, the team is seeking collaborations to synthesize, test, and, if needed, optimize the published molecules. <br></p> </div> </div>
<div> <div> <div> <p>The emergence of the 2019 novel coronavirus (2019-nCoV), for which there is no vaccine or any known effective treatment created a sense of urgency for novel drug discovery approaches. One of the most important 2019-nCoV protein targets is the 3C-like protease for which the crystal structure is known. Most of the immediate efforts are focused on drug repurposing of known clinically-approved drugs and virtual screening for the molecules available from chemical libraries that may not work well. For example, the IC50 of lopinavir, an HIV protease inhibitor, against the 3C-like protease is approximately 50 micromolar. In an attempt to address this challenge, on January 28th, 2020 Insilico Medicine decided to utilize a part of its generative chemistry pipeline to design novel drug-like inhibitors of 2019-nCoV and started generation on January 30th. It utilized three of its previously validated generative chemistry approaches: crystal-derived pocked- based generator, homology modelling-based generation, and ligand-based generation. Novel druglike compounds generated using these approaches are being published at www.insilico.com/ncov-sprint/ and will be continuously updated. Several molecules will be synthesized and tested using the internal resources; however, the team is seeking collaborations to synthesize, test, and, if needed, optimize the published molecules. </p> </div> </div> </div>
<div> <div> <div> <div> <p>One of the most important SARS-CoV-2 protein targets for therapeutics is the 3C-like protease (main protease, Mpro). In our previous work1we used the first Mpro crystal structure to become available, 6LU7. On February 4, 2020 Insilico Medicine released the first potential novel protease inhibitors designed using a de novo,AI-driven generative chemistry approach. Nearly 100 X-ray structures of Mpro co-crystallized both with covalent and non-covalent ligands have been published since then. Here we utilize the recently published 6W63 crystal structure of Mpro complexed with a non-covalent inhibitor and combined two approaches used in our previous study: ligand-based and crystal structure-based. We published 10 representative structures for potential development with 3D representation in PDB format and welcome medicinal chemists for broad discussion and generated output analysis. The molecules in SDF format and PDB-models for generated protein-ligand complexes are available here and at https://insilico.com/ncov-sprint/.Medicinal chemistry VR analysis was provided by Nanome team and the video of VR session is available at https://bit.ly/ncov-vr. </p> </div> </div> </div> </div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.