The importance of linear fractional programming comes from the fact that many real life problems are based on the ratio of physical or economic values (for example cost/time, cost/volume, profit/cost or any other quantities that measure the efficiency of a system) expressed by linear functions. Usually, the coefficients used in mathematical models are subject to errors of measurement or vary with market conditions. Dealing with inaccuracy or uncertainty of the input data is made possible by means of the fuzzy set theory. Our purpose is to introduce a method of solving a linear fractional programming problem with uncertain coefficients in the objective function. We have applied recent concepts of fuzzy solution based on α-cuts and Pareto optimal solutions of a biobjective optimization problem. As far as solving methods are concerned, the linear fractional programming, as an extension of linear programming, is easy enough to be handled by means of linear programming but complicated enough to elude a simple analogy. We follow the construction of the fuzzy solution for the linear case introduced by Dempe and Ruziyeva (2012), avoid the inconvenience of the classic weighted sum method for determining Pareto optimal solutions and generate the set of solutions for a linear fractional program with fuzzy coefficients in the objective function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.