Currently, the 13-valent pneumococcal conjugate vaccine (PCV13) is administered under a 1+1 (1 primary dose) pediatric schedule in the United Kingdom (UK). Higher-valency PCVs, 15-valent PCV (PCV15), or 20-valent PCV (PCV20) might be considered to expand serotype coverage. We evaluated the cost-effectiveness of PCV20 or PCV15 using either a 2+1 (2 primary doses) or 1+1 schedule for pediatric immunization in the UK. Using a dynamic transmission model, we simulated future disease incidence and costs under PCV13 1+1, PCV20 2+1, PCV20 1+1, PCV15 2+1, and PCV15 1+1 schedules from the UK National Health Service perspective. We prospectively estimated disease cases, direct costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratio. Scenario analyses were performed to estimate the impact of model assumptions and parameter uncertainty. Over a five-year period, PCV20 2+1 averted the most disease cases and gained the most additional QALYs. PCV20 2+1 and 1+1 were dominant (cost-saving and more QALYs gained) compared with PCV15 (2+1 or 1+1) and PCV13 1+1. PCV20 2+1 was cost-effective (GBP 8110/QALY) compared with PCV20 1+1. PCV20 was found cost-saving compared with PCV13 1+1, and PCV20 2+1 was cost-effective compared with PCV20 1+1. Policymakers should consider the reduction in disease cases with PCV20, which may offset vaccination costs.
Background: Classic medical technology assessment (MTA) is typically conducted at the end of the development process to assess the overall value of a drug, medical device or diagnostic test. Recently, researchers and manufacturers have recognized that MTA in the early phases could help to make better decisions about further development, the regulatory and reimbursement strategy, and allocating public support for new technologies. The aim of this study is to introduce the most commonly used methods in early MTAs of emerging technologies and examine which methods have been used in the early MTAs of medical devices and tests. Methods: An explorative literature review. Results: Classic MTA supports particularly regulators and payers in market and reimbursement decisions, while early MTA primarily supports decisions of manufacturers about investments and strategies regarding further development as well as decisions by policymakers about public support. Important methods that can be used in early MTAs of medical devices include early health economic modelling, the headroom method, the Bayesian analytical framework, clinical trial simulation, multi-criteria decision analysis and value of information analysis. Only a few articles have been described early HTAs of devices and tests and most of these have used economic modelling, sometimes in combination with other methods. Conclusions: Various methods can be applied in performing early MTA. While early MTA follows the same steps as classic MTA, repeated assessments and sensitivity analysis play a more significant role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.