The differences in the pollutant emissions from the combustion of bituminous coal and biofuels (wood, straw, and miscanthus pellets) under real-world boiler operating conditions were investigated. The experiments were performed on an experimental installation that comprised an 18 kW boiler, used in domestic central heating systems, equipped with a retort furnace, an automatic fuel feeder, a combustion air fan, and a fuel storage bin. The emission factors of gaseous pollutants, particulate matter, organic carbon, elemental carbon, and polycyclic aromatic hydrocarbons (PAHs), as well as some PAH concentration ratios for coal and biofuel combustion, were determined. The obtained results indicate that fuel properties have a strong influence on the emission factors of gaseous and carbonaceous pollutants. The total particulate matter (PM) emissions from the biofuel combustion were about 5-fold lower than those from the coal burned in the same boiler. The emission factors of the total carbons from the biofuel combustion were between 10 and 20 times lower than those from the coal combustion. The mean organic carbon (OC) and elemental carbon (EC) emission factors, based on the burned fuel, were 161–232 and 42–221 mg/kg for the biofuels and 1264 and 3410 g/kg for the coal, respectively. The obtained results indicate that molecular diagnostic ratios, based on the concentration of PAHs, vary significantly, depending on the fuel type.
Keywords: Environment protection, brown coal, traceelements, combustion products, fl ue gas desulphurization (FGD) gypsum, forecast of trace elements emission, forecast of trace elements transfer.Abstract: A forecast of the negative impact exerted on the environment by selected trace elements in "Bełchatów" Power Plant has been prepared on the basis of the results of investigations into these elements' distribution carried out as part of earlier research on coal from "Bełchatów" Field and the data on updated analyses of the content of these elements in 55 brown coal samples from test boreholes.Work in "Bełchatów" Power Plant, which is supplied with coal from "Szczerców" Field, will be accompanied by trace elements transfer. On the basis of the conducted investigations it has been found that the biosphere is most threatened by mercury emissions. As shown by the presented results of analyses and calculations, the emissions of mercury in "Bełchatów" Power Plant are low. Mercury is accumulated chiefl y in gypsum produced in the FGD plant. The content of mercury in slag and ash is low.
Abstract:The aim of this research was to assess the content and composition of the pollutants emitted by domestic central heating boilers equipped with an automatic underfeed fuel delivery system for the combustion chamber. The comparative research was conducted. It concerned fuel properties, fl ue gas parameters, contents of dust (fl y ash) and gaseous substances polluting the air in the fl ue gases emitted from a domestic CH boiler burning bituminous coal, pellets from coniferous wood, cereal straw, miscanthus, and sunfl ower husks, coniferous tree bark, and oats and barley grain. The emission factors for dust and gaseous air pollutants were established as they are helpful to assess the contribution of such boilers in the atmospheric air pollution. When assessing the researched boiler, it was found out that despite the development in design and construction, fl ue gases contained fl y ash with a signifi cant EC content, which affected the air quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.