Recently, thioridazine (10-[2-(1-methyl-2-piperidyl) ethyl]-2-methylthiophenothiazine), a well-known anti-psychotic agent was found to have anti-cancer activity in cancer cells. However, the molecular mechanism of the agent in cellular signal pathways has not been well defined. Thioridazine significantly increased early- and late-stage apoptotic fraction in cervical and endometrial cancer cells, suggesting that suppression of cell growth by thioridazine was due to the induction of apoptosis. Cell cycle analysis indicated thioridazine induced the down-regulation of cyclin D1, cyclin A and CDK4, and the induction of p21 and p27, a cyclin-dependent kinase inhibitor. Additionally, we compared the influence of thioridazine with cisplatin used as a control, and similar patterns between the two drugs were observed in cervical and endometrial cancer cell lines. Furthermore, as expected, thioridazine successfully inhibited phosphorylation of Akt, phosphorylation of 4E-BP1 and phosphorylation of p70S6K, which is one of the best characterized targets of the mTOR complex cascade. These results suggest that thioridazine effectively suppresses tumor growth activity by targeting the PI3K/Akt/mTOR/p70S6K signaling pathway.Electronic supplementary materialThe online version of this article (doi:10.1007/s10495-012-0717-2) contains supplementary material, which is available to authorized users.
The suppressor of MEK null (sMEK1) protein possesses pro-apoptotic activities. In the current study, we reveal that sMEK1 functions as a novel anti-angiogenic factor by suppressing vascular endothelial growth factor (VEGF)-induced cell proliferation, migration, and capillary-like tubular structure in vitro. In addition, sMEK1 inhibited the phosphorylation of the signaling components up- and downstream of Akt, including phospholipase Cγ1 (PLC-γ1), 3-phosphoinositide-dependent protein kinase 1 (PDK1), endothelial nitric oxide synthetase (eNOS), and hypoxia-inducible factor 1 (HIF-1α) during ovarian tumor progression via binding with vascular endothelial growth factor receptor 2 (VEGFR-2). Furthermore, sMEK1 decreased tumor vascularity and inhibited tumor growth in a xenograft human ovarian tumor model. These results supply convincing evidence that sMEK1 controls endothelial cell function and subsequent angiogenesis by suppressing VEGFR-2-mediated PI3K/Akt/eNOS signaling pathway. Taken together, our results clearly suggest that sMEK1 might be a novel anti-angiogenic and anti-tumor agent for use in ovarian tumor.
Myristoylated alanine-rich C kinase substrate-like 1 (MARCKSL1) plays a pivotal role in the regulation of apoptosis and has been shown to maintain antitumor and metastasis-suppressive properties. In the present study, we examined the effects of MARCKSL1 as a novel anti-angiogenic agent on the inhibition of angiogenesis-mediated cell migration. MARCKSL1 also reduced vascular endothelial growth factor (VEGF)-induced human umbilical vein endothelial cell (HUVEC) proliferation, as well as capillary-like tubular structure formation in vitro. MARCKSL1 disrupted phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2) in ovarian tumorigenesis. In addition, MARCKSL1 showed potent anti-angiogenic activity and reduced the levels of VEGF and hypoxia-inducible factor 1α (HIF-1α) expression, an essential regulator of angiogenesis. Consistently, MARCKSL1 decreased VEGF‑induced phosphorylation of the PI3K/Akt signaling pathway components, including phosphoinositide-dependent protein kinase 1 (PDK-1), mammalian target of rapamycin (mTOR), tuberous sclerosis complex 2 (TSC-2), p70 ribosomal protein S6 kinase (p70S6K), and glycogen synthase kinase 3β (GSK-3β) protein. Collectively, our results provide evidence for the physiological/biological function of an endothelial cell system involved in angiogenesis through suppression of Akt/PDK-1/mTOR phosphorylation by interaction with VEGFR-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.