Background l-carnitine is emerging as an item of interest for cardiovascular disease (CVD) prevention and treatment, but controversy exists. To examine the effectiveness and safety of l-carnitine, we assessed how genetically different levels of l-carnitine are associated with CVD risk and its risk factors. Given higher CVD incidence and l-carnitine in men, we also examined sex-specific associations. Methods We used Mendelian randomization to obtain unconfounded estimates. Specifically, we used genetic variants to predict l-carnitine, and obtained their associations with coronary artery disease (CAD), ischemic stroke, heart failure, and atrial fibrillation, as well as CVD risk factors (type 2 diabetes, glucose, HbA1c, insulin, lipid profile, blood pressure and body mass index) in large consortia and established cohorts, as well as sex-specific association in the UK Biobank. We obtained the Wald estimates (genetic association with CVD and its risk factors divided by the genetic association with l-carnitine) and combined them using inverse variance weighting. In sensitivity analysis, we used different analysis methods robust to pleiotropy and replicated using an l-carnitine isoform, acetyl-carnitine. Results Genetically predicted l-carnitine was nominally associated with higher risk of CAD overall (OR 1.07 per standard deviation (SD) increase in l-carnitine, 95% CI 1.02 to 1.11) and in men (OR 1.09, 95% CI 1.02 to 1.16) but had a null association in women (OR 1.00, 95% CI 0.92 to 1.09). These associations were also robust to different methods and evident for acetyl-carnitine. Conclusions Our findings do not support a beneficial association of l-carnitine with CVD and its risk factors but suggest potential harm. l-carnitine may also exert a sex-specific role in CAD. Consideration of the possible sex disparity and exploration of the underlying pathways would be worthwhile.
Red meat consumption has been found to closely related to cardiometabolic health, with sex disparity. However, the specific metabolic factors corresponding to red meat consumption in men and women have not been examined previously. We analyzed the sex-specific associations of meat consumption, with 167 metabolites using multivariable regression, controlling for age, ethnicity, Townsend deprivation index, education, physical activity, smoking, and drinking status among ~79,644 UK Biobank participants. We also compared the sex differences using an established formula. After accounting for multiple testing with false discovery rate < 5% and controlling for confounders, the positive associations of unprocessed red meat consumption with branched-chain amino acids and several lipoproteins, and the inverse association with glycine were stronger in women, while the positive associations with apolipoprotein A1, creatinine, and monounsaturated fatty acids were more obvious in men. For processed meat, the positive associations with branched-chain amino acids, several lipoproteins, tyrosine, lactate, glycoprotein acetyls and inverse associations with glutamine, and glycine were stronger in women than in men. The study suggests that meat consumption has sex-specific associations with several metabolites. This has important implication to provide dietary suggestions for individuals with or at high risk of cardiometabolic disease, with consideration of sex difference.
Growing evidence suggests that red meat consumption is a risk factor for cardiovascular health, with potential sex disparity. The metabolic mechanisms have not been fully understood. Using the UK Biobank, first we examined the associations of unprocessed red meat and processed meat with ischemic heart disease (IHD) mortality overall and by sex using logistic regression. Then, we examined the overall and sex-specific associations of red meat consumption with metabolites using multivariable regression, as well as the associations of selected metabolites with IHD mortality using logistic regression. We further selected metabolic biomarkers that are linked to both red meat consumption and IHD, with concordant directions. Unprocessed red meat and processed meat consumption was associated with higher IHD mortality overall and in men. Thirteen metabolites were associated with both unprocessed red meat and IHD mortality overall and showed a consistent direction, including triglycerides in different lipoproteins, phospholipids in very small very-low-density lipoprotein (VLDL), docosahexaenoic acid, tyrosine, creatinine, glucose, and glycoprotein acetyls. Ten metabolites related to triglycerides and VLDL were positively associated with both unprocessed red meat consumption and IHD mortality in men, but not in women. Processed meat consumption showed similar results with unprocessed red meat. Triglycerides in lipoproteins, fatty acids, and some nonlipid metabolites may play a role linking meat consumption to IHD. Triglycerides and VLDL-related lipid metabolism may contribute to the sex-specific associations. Sex differences should be considered in dietary recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.