AbstractWe experimentally investigated the soliton collisions between soliton molecules and deuterogenic solitons spontaneously generated on the continuous wave (cw) noise background in an ultrafast erbium-doped fiber laser mode locked with MoS2 saturable absorber (SA). The dynamics of the soliton collisions were observed using the time-stretch dispersion Fourier transform technique. The noise-induced deuterogenic solitons first undergo spectral broadening and wavelength shifting, then collide successively with a soliton molecule and eventually vanish. Within the simple collision framework, the spectral-temporal dynamics of soliton collision would help to unveil the self-stabilization mechanism of the soliton molecules in consideration of dispersive wave shedding. This nonlinear dynamics is similar to the soliton rain, except that complex condensed soliton phase is substituted with a soliton molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.