In order to reveal the effect of the blades normal vibration on flow turbulence in the stirred vessel, we designed three kinds of blades: the flexible, flat‐rigid and curved‐rigid blades. The flow fields produced by the impellers with these three kinds of blades were measured by two‐dimensional particle image velocimetry. The results showed that the calculated turbulent kinetic energy (TKE) based on the pseudo‐isotropic assumption is slightly higher than that by the three fluctuating velocities for the flexible and curved‐rigid impellers, and the difference between above two calculations is smaller for the former impeller. For the flexible blades, the trailing vortices slightly move outwards in radial direction than those for the curved‐rigid blades, enhancing TKE transport from the blade to the bulk region of the vessel. For the flexible impeller, the phase‐averaged TKE differs slightly from that for the flat‐rigid impeller, but is higher than that for the curved‐rigid impeller. © 2018 American Institute of Chemical Engineers AIChE J, 64: 4148–4161, 2018
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.