Purpose. To verify the biomechanical importance with respect to the integrity of posteromedial cortex of femoral neck fracture (FNF) and demonstrate whether the modified fixation of cannulated screws (CSs) could increase the biomechanical strength. Methods. A total of 24 left artificial femurs were randomly divided into three groups. The osteotomy was made in the center of the femoral neck at a 20° angle to the shaft axial. The posteromedial cortices of femoral neck were removed in groups B and C. In group A, 8 femurs with intact posteromedial cortex were fixed with three parallel partial thread screws (PTSs), forming a standard triangle. In group B, the femurs were stabilized with the same fixation of CSs like group A. In group C, two inferior PTSs were replaced by two fully thread screws (FTSs). Results. The lower A-P and axial stiffness and load to failure along with higher axial displacement were found in group B compared with group A (p≤0.001 for all). Between groups B and C, the modified fixation of CSs increased A-P and axial stiffness and load to failure and reduced the axial displacement (p≤0.001 for all). Conclusions. We verified that the comminuted posteromedial cortex affected the biomechanical strength adversely and resulted in higher displacement. The modified fixation of CSs characterized by two inferior FTSs could improve the biomechanical performance and buttress the femoral head fragment better.
Acellular matrix is a type of promising biomaterial for wound healing promotion. Although acellular bovine and porcine tissues have proven effective, religious restrictions and risks of disease transmission remain barriers to their clinical use. Acellular fish skin (AFS), given its similarity to human skin structure and without the aforementioned disadvantages, is thus seen as an attractive alternative. This study aims to fabricate AFS from the skin of black carp (Mylopharyngodon piceus), evaluate its physical and mechanical properties and assess its impact on wound healing. The results showed that AFS has a highly porous structure, along with high levels of hydrophilicity, water-absorption property and permeability. Furthermore, physical characterization showed the high tensile strength of AFS in dry and wet states, and high stitch tear resistance, indicating great potential in clinical applications. Cell Counting Kit-8 was used to test the viability of L929 cells when culturing in the extracts of AFS. Compared with the control group, there is no significant difference in optical density value when culturing in the extracts of AFS at days 1, 3 and 7 (*p > 0.05). In vivo wound healing evaluation then highlighted its promotion of angiogenesis and collagen synthesis, its function in anti-inflammation and acceleration in wound healing. Therefore, this study suggests that AFS has potential as a promising alternative to mammal-derived or traditional wound dressing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.