Medical computer-aided diagnosis systems are essential applications that help doctors speed up, standardize, and improve disease prediction quality. Nevertheless, it is hard to implement a high-accuracy diagnosis system due to complex medical data structures that are hard to interpret even by an experienced radiologist, lack of the labeled data, and the high-resolution three-dimensional nature of the data. Meanwhile, modern deep learning methods achieved a significant breakthrough in various computer vision tasks. Thus, the same methods began to gain popularity in the community that works on the computer-aided systems implementation. Most modern diagnosis systems work with three-dimensional medical images that cannot be processed by traditional two-dimensional convolutional neural networks to get high enough prediction results. Hence, medical research introduced new methods that use three-dimensional neural networks to work with medical images. Even though these networks are usually an adapted version of state-of-the-art two-dimensional networks, they still have their specifics and modifications that help achieve human-level accuracy and should be considered separately. This article overviews the three-dimensional convolutional neural networks and how they are different from their two-dimensional versions. Moreover, the article examines the most influenced systems that achieve human-level accuracy in predicting the specific disease. The networks discussed in the perspective of two basic tasks: segmentation and classification. That is because the simple end-to-end classification neural networks usually do not work well on the available amount of data in the medical domain.
This article provides an overview of the modern medical image segmentation methods. The most popular methods such as multi-atlas based methods and deep learning approach are considered in more details. In addition, this article overviews different steps of the multi-atlas based methods (MAS) in detail and shows which modern algorithms and approaches used in different steps of MAS to achieve state of the art results in the medical image segmentation task and how it affects the accuracy of the algorithm. Also, there is a brief description of the modern deep learning algorithms which are used for the medical image segmentation. Such type of algorithm is used as an independent algorithm or as a part of the MAS. Finally, this article summarizes described algorithms and evaluates which approaches promise to improve state of the art result of the medical image segmentation in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.