The mathematical formulation of the problem of determining the coordinates of targets in the network of counter-battery radars is formulated. It has been established that the problem of estimating the coordinates of targets in the network of counter-battery radars for an excessive number of estimates of primary coordinates should be considered as a statistical problem. The method for determining the coordinates of the firing positions of roving mortars has been improved, in which, in contrast to the known ones, the coordinates of targets on the flight trajectory are coordinated with space and time and the information is processed by a network of counter-battery radars. The developed simulation mathematical model for determining the coordinates of the firing positions of roving mortars by a network of counter-battery radars. Simulation modeling of the method for determining the coordinates of the firing positions of roving mortars by a network of counter-battery radars has been carried out. It has been established that the use of a network of radars makes it possible to increase the accuracy of determining the coordinates of the firing means on average from 23 % to 71 %, depending on the number of counter-battery radars in the network. It has also been found that the appropriate number of counter-battery warfare radars in the network is three or four. A further increase in the number of counter-battery warfare radars in the network does not lead to a significant increase in the accuracy of determining the coordinates of artillery and mortar firing positions. In carrying out further research, it is necessary to develop a method for the spatial separation of elements of a group of targets and interfering objects by a network of counter-battery warfare radars
The increase in the accuracy of determining the coordinates of targets is explained by the use of a network of counter-battery radar stations and the rangefinding method for determining the coordinates of targets. The main advantage of using the rangefinding method for determining the coordinates of targets in a network of counter-battery radar stations is to ensure the required accuracy in determining the coordinates of targets without using accurate measurement of angular coordinates. The minimum geometry of the system, which ensures the use of the rangefinding method for determining coordinates, is given. The method of determining the coordinates of targets by a network of counter-battery radar stations has been improved. In contrast to the known ones, information about the range to the target is additionally used in a spatially distributed network of radar stations for counter-battery combat. The boundaries of the working zones of the network of two and three counter-battery radar stations are calculated. The features of creating a continuous strip using the rangefinding method for determining the coordinates of the target are considered. Statistical modeling of the rangefinding method for determining the plane coordinates of the target has been carried out. It has been established that the use of the rangefinding method ensures the determination of the planar coordinates of the target in a sector of at least 120°. The targets are at a distance of direct radio visibility in relation to the counter-battery radar. The root-mean-square error in determining the target range in this case is no more than 50 m. It has been established that the creation of continuous bands of a low-altitude radar field at a certain height is possible by arranging radar stations in a line. In this case, the distance between the counter-battery radar stations should be no more than half the target detection range at this height
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.