Patients with SS have a high overall survival. Survival probability was lower in patients with associated CHDs and in patients with pulmonary hypertension. Surgical treatment of SS is beneficial in reducing symptoms, however, given the significant risk of post-operative scimitar drainage stenosis/occlusion, it should be tailored to a comprehensive haemodynamic evaluation and to the patient's age.
OBJECTIVES
A second paediatric report has been generated from the European Registry for Patients with Mechanical Circulatory Support (EUROMACS). The purpose of EUROMACS, which is operated by the European Association for Cardio-Thoracic Surgery, is to gather data related to durable mechanical circulatory support for scientific purposes and to publish reports with respect to the course of mechanical circulatory support therapy. Since the first report issued, efforts to increase compliance and participation have been extended. Additionally, the data provided the opportunity to analyse patients of younger age and lower weight.
METHODS
Participating hospitals contributed pre-, peri- and long-term postoperative data on mechanical circulatory support implants to the registry. Data for all implants in paediatric patients (≤19 years of age) performed from 1 January 2000 to 1 July 2019 were analysed. This report includes updates of patient characteristics, implant frequency, outcome (including mortality rates, transplants and recovery rates) as well as adverse events including neurological dysfunction, device malfunction, major infection and bleeding.
RESULTS
Twenty-nine hospitals contributed 398 registered implants in 353 patients (150 female, 203 male) to the registry. The most frequent aetiology of heart failure was any form of cardiomyopathy (61%), followed by congenital heart disease and myocarditis (16.4% and 16.1%, respectively). Competing outcomes analysis revealed that a total of 80% survived to transplant or recovery or are ongoing; at the 2-year follow-up examination, 20% died while on support. At 12 months, 46.7% received transplants, 8.7% were weaned from their device and 18.5% died. The 3-month adverse events rate was 1.69 per patient-year for device malfunction including pump exchange, 0.48 for major bleeding, 0.64 for major infection and 0.78 for neurological events.
CONCLUSIONS
The overall survival rate was 81.5% at 12 months following ventricular assist device implant. The comparison of survival rates of the early and later eras shows no significant difference. A focus on specific subgroups showed that survival was less in patients of younger age (<1 year of age) (P = 0.01) and lower weight (<20 kg) (P = 0.015). Transplant rates at 6 months continue to be low (33.2%) The fact that the EUROMACS registry is embedded within the European Association for Cardio-Thoracic Surgery Quality Improvement Programme offers opportunities to focus on improving outcomes.
Substantial progress has been made in the standardization of nomenclature for paediatric and congenital cardiac care. In 1936, Maude Abbott published her Atlas of Congenital Cardiac Disease, which was the first formal attempt to classify congenital heart disease. The International Paediatric and Congenital Cardiac Code ( IPCCC) is now utilized worldwide and has most recently become the paediatric and congenital cardiac component of the Eleventh Revision of the International Classification of Diseases (ICD-11). The most recent publication of the IPCCC was in 2017. This manuscript provides an updated 2021 version of the IPCCC. The International Society for Nomenclature of Paediatric and Congenital Heart Disease (ISNPCHD), in collaboration with the World Health Organization (WHO), developed the paediatric and congenital cardiac nomenclature that is now within the eleventh version of the International Classification of Diseases (ICD-11). This unification of IPCCC and ICD-11 is the IPCCC ICD-11 Nomenclature and is the first time that the clinical nomenclature for paediatric and congenital cardiac care and the administrative nomenclature for paediatric and congenital cardiac care are harmonized. The resultant congenital cardiac component of ICD-11 was increased from 29 congenital cardiac codes in ICD-9 and 73 congenital cardiac codes in ICD-10 to 318 codes submitted by ISNPCHD through 2018 for incorporation into ICD-11. After these 318 terms were incorporated into ICD-11 in 2018, the WHO ICD-11 team added an additional 49 terms, some of which are acceptable legacy terms from ICD-10, while others provide greater granularity than the ISNPCHD thought was originally acceptable. Thus, the total number of paediatric and congenital cardiac terms in ICD-11 is 367. In this manuscript, we describe and review the terminology, hierarchy, and definitions of the IPCCC ICD-11 Nomenclature. This article, therefore, presents a global system of nomenclature for paediatric and congenital cardiac care that unifies clinical and administrative nomenclature. The members of ISNPCHD realize that the nomenclature published in this manuscript will continue to evolve. The version of the IPCCC that was published in 2017 has evolved and changed, and it is now replaced by this 2021 version. In the future, ISNPCHD will again publish updated versions of IPCCC, as IPCCC continues to evolve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.