The paper analyzes the summation of the powers of two sources in a hemispherical open resonator (OR) during its tuning. The first higher axially asymmetric TEM10q oscillation mode is excited in the resonator. A circuit with an E- tee waveguide is proposed, which makes it possible to research the summation of the powers using a Gunn diode. Studies of the conducting part of the millimeter range have been undertaken. It is shown that the coefficient of powers summation of two sources in the OR using slot coupling elements does not exceed 72%. The use of one H- polarized diffraction grating, which is in the resonator, does not lead to a significant increase in the summation coefficient when moving it. This is due to the excitation of the first type of TEM10q oscillations in the resonator.
Purpose. The excitation efficiency is investigated of the first higher-order axially asymmetric oscillation mode (TEM10q) excited in a hemispherical open resonator (OR) at the frequencies of the fundamental and second-order harmonics of the Gunn diode in the 4-mm and 2-mm wavelength ranges. The hemispherical resonator is coupled to its input waveguide via aperture-type coupling elements. The diameter 2a of the OR mirror apertures is 38 mm, while the curvature radius of the spherical reflector is R = 39 mm and the normalized distance between the mirrors is L/R = 0.593. Two aperture coupling elements of dimensions a× b = 6.9 × 9.6 mm are used to excite the OR. They permit controlling separately the functions of field-to-field matching (modes in the resonator and in the waveguide) and volume- to-volume coupling of the structural elements (the resonator and the waveguide). They are located at the center of the planar mirror. The field matching is determined by the geometric dimensions of the coupling elements, whereas the coupling matching is determined by the period of the one-dimensional E-polarized grating in their apertures. The Gunn diodes are used as generators, operating at the frequencies of the fundamental (75 GHz) andthe second-order (150 GHz) harmonics. The excitation efficiency of the TEM1011 oscillation in the OR of the geometry specified here, using aperture-type coupling elements as described, is 81.5%. Design/methodology/approach. The excitation efficiency of higher-order oscillation modes ТЕМ10q in the OR being driven by an incident ТЕ10 mode that arrives via two rectangular guides, is evalua-ted using the antenna surface utilization factor. The reflection coefficient from the OR and the loaded Q-factor are estimated in the familiar technique of partial reflection coefficients summation. Findings. As has been shown, in an OR of parameters 2а= 38 mm, R= 78 mm, and L/R= 0.287 TEM1022 oscillations are excited at the frequency of the Gunn diode’s second-order harmonic (i.e., 150 GHz) with an efficiency of 84%. In that same resonator, the excitation efficiency of the TEM1011 mode at the fundamental Gunn diode’s harmonic (frequency of 75 GHz) equals 54%. By placing one-dimensional (E-polarized) wire gratings in the aperture of the coupling elements it proves possible to match the resonator with the waveguide. It has been found that in the case of a l = 0.2 mm spatial period of the wire grating and matched excitation of the resonator at f = 150 GHz (i.e. Г150 = 0), the reflection coefficient Г75 from the OR at f = 75 GHz equals 0.637. Upon excitation in the OR of oscillations in the TEM1022 mode, the total loss at f = 150 GHz is –1.23 dB. With TEM1011 oscillations excited in the same resonator at a frequency of 75 GHz, the total losses increase up to –5.4 dB. Conclusions. The analysis has shown that an OR implementing the proposed method of excitation of higher-order axially asymmetric for constructing a subterahertz range local oscillator. Moreover, such a resonant system may be considered both as a power combiner and a diplexer (filter).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.