Both B cells and dendritic cells (DCs) have been implicated as autoantigen-presenting cells in the activation of self-reactive T cells. However, most self-proteins are ubiquitously and/or developmentally expressed, making it difficult to determine the source and the exposure of autoantigens to APCs in a controlled manner. In this study, we have used an Ig transgenic mouse model to examine the mechanisms by which B cells and other APCs acquire and present lupus autoantigens in vivo. Targeting a lupus autoantigen, the small nuclear ribonucleoprotein particle D protein, to the BCR activates autoreactive T cells in the periphery. Our in vivo studies demonstrate that autoantigen-specific B cells, when present in the repertoire, are the first subset of APCs to capture and present self-proteins for activating T cells. Thereafter, DCs acquire self-Ag and become effective APCs for stimulating the same subsets of autoreactive T cells. This mechanism provides one explanation of how early steps in autoimmunity can focus responses, via BCR, at a small group of self-proteins among the total milieu of intracellular self-proteins. Subsequently, DCs and other professional APCs may then amplify and perpetuate the autoimmune T cell response.
TNF-α (TNF), a pro-inflammatory cytokine is synthesized as a 26 kDa protein, anchors in the plasma membrane as transmembrane TNF (TmTNF), and is subjected to proteolysis by the TNF-α converting enzyme (TACE) to release the 15 kDa form of soluble TNF (sTNF). TmTNF and sTNF interact with 2 distinct receptors, TNF-R1 (p55) and TNF-R2 (p75), to mediate the multiple biologic effects of TNF described to date. Several anti-TNF biologics that bind to both forms of TNF and block their interactions with the TNF receptors are now approved for the treatment of a variety of immune-mediated diseases. Several reports suggest that binding of anti-TNFs to TmTNF delivers an outside-to-inside ‘reverse’ signal that may also contribute to the efficacy of anti-TNFs. Some patients, however, develop anti-TNF drug antibody responses (ADA or immunogenicity). Here, we demonstrate biochemically that TmTNF is transiently expressed on the surface of lipopolysaccharide-stimulated primary human monocytes, macrophages, and monocyte-derived dendritic cells (DCs) and expression of TmTNF on the cell surface is enhanced following treatment of cells with TAPI-2, a TACE inhibitor. Importantly, binding of anti-TNFs to TmTNF on DCs results in rapid internalization of the anti-TNF/TmTNF complex first into early endosomes and then lysosomes. The internalized anti-TNF is processed and anti-TNF peptides can be eluted from the surface of DCs. Finally, tetanus toxin peptides fused to anti-TNFs are presented by DCs to initiate T cell recall proliferation response. Collectively, these observations may provide new insights into understanding the biology of TmTNF, mode of action of anti-TNFs, biology of ADA response to anti-TNFs, and may help with the design of the next generation of anti-TNFs.
γδ T cells have unique features and functions compared with αβ T cells and have been proposed to bridge the innate and adaptive immune responses. Our earlier studies demonstrated that splenic γδ T cells predominantly produce IFN-γ upon activation in vitro, which is partially due to the expression of the Th1-specific transcription factor T-bet. In this study we have explored the epigenetic and transcriptional programs that underlie default IFN-γ production by γδ T cells. We show that the kinetics of IFN-γ transcription is faster in γδ T cells compared with CD4+ and CD8+ T cells and that γδ T cells produce significantly greater amounts of IFN-γ in a proliferation-independent manner when compared with other T cell subsets. By analyzing the methylation pattern of intron 1 of the ifn-γ locus, we demonstrate that this region in naive γδ T cells is hypomethylated relative to the same element in naive CD4+ and CD8+ T cells. Furthermore, naive γδ T cells constitutively express eomesodermin (Eomes), a transcription factor important for IFN-γ production in CD8+ T cells, and Eomes expression levels are enhanced upon activation. Retroviral transduction of activated γδ T cells from both wild-type and T-bet-deficient mice with a dominant negative form of Eomes significantly reduced IFN-γ production, indicating a critical role for this transcription factor in mediating IFN-γ production by γδ T cells in a T-bet-independent manner. Our results demonstrate that both epigenetic and transcriptional programs contribute to the early vigorous IFN-γ production by γδ T cells.
B cells play an active role in directing immunity against specific proteins in part because of their capacity to sequester antigen via B cell receptor (BCR). Our prior findings indicate that B cells can initiate an immune response in vivo to self proteins independent of other antigen‐presenting cells (APC). However, these studies also demonstrated that both dendritic cells and macrophages are important in the ongoing immune response. The present work illustrates a mechanism by which antigen acquired by B cells through BCR is specifically transferred to other APC, in particular, macrophages. The transfer of antigen is dependent on the specificity of BCR and requires direct contact between the cells, but does not require MHC compatibility between the cells and is independent of the activation state of macrophages. Antigen transfer is functional, in that macrophages, which received B cell derived‐antigen, can activate CD4 T cells. Overall, these results define a novel mechanism by which B cells can focus immunity toward a specific antigen and transfer the ability to activate CD4 T cells to other APC.
B lymphocytes can function independently as efficient APCs. However, our previous studies demonstrate that both dendritic cells and macrophages are necessary to propagate immune responses initiated by B cell APCs. This finding led us to identify a process in mice whereby Ag-specific B cells transfer Ag to other APCs. In this study, we report the ability and mechanism by which human B lymphocytes can transfer BCR-captured Ag to macrophages. The transfer of Ag involves direct contact between the two cells followed by the capture of B cell-derived membrane and/or intracellular components by the macrophage. These events are abrogated by blocking scavenger receptor A, a receptor involved in the exchange of membrane between APCs. Macrophages acquire greater amounts of Ag in the presence of specific B cells than in their absence. This mechanism allows B cells to amplify or edit the immune response to specific Ag by transferring BCR-captured Ag to other professional APCs, thereby increasing the frequency of its presentation. Ag transfer may perpetuate chronic autoimmune responses to specific self-proteins and help explain the efficacy of B cell-directed therapies in human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.