Wireless power transfer devices are becoming more relevant and widespread. Therefore, an article is devoted to a review, analysis and comparison of compensation topologies for an inductive power transfer. A new classification of topologies is developed. A lot of attention is paid to the problems of the physical fundamentals of compensation work, standards, safety, and five main topology requirements. It is determined, that topologies with the series primary compensating are the most effective in the IPT for charging devices among the four classical schemes. The series-parallel solution is recommended in case of the low output voltage, minimum size of a secondary side coil is achievable. The series-series solution does not depend on the magnetic coupling coefficient and the load on the resonance frequency. For the convenience of displaying and understanding the information, the comparison results are listed in the tables, graphs and dependencies. The main suitable topologies for a certain application are defined. The given conclusions provide a ''one-stop'' information source and a selection guide on the application of compensation topologies both in terms of devices and in terms of power level that is the main value of this paper. During literature analysis and recent trends in the market for wireless power transmission devices, the main possible further ways of developing topologies are underlined. First of all, it concerns increasing the frequency of resonance of compensation topologies, the use of multilevel / multi-pulse / multicoils structures, the study of existing high-frequency semiconductors and the development of the semiconductor and magnetic materials.
As the use of photovoltaics becomes more widespread, new technologies for more efficient energy generation, transmission, and distribution based on power electronics converters are being developed. The most common applications are grid-on, energy storage, hybrid, and high voltage gain applications. These applications impose several additional requirements in the design of power converters associated with the solar battery’s maximum power tracking and operation in a wide range of input currents and voltages. The practical realization of such solutions can be implemented on the basis of various topologies, which requires a preliminary application of criteria for assessing their effectiveness. The paper conducts a comparison of different topologies on power converters based on two parameters that describe their cost and power loss for various PV applications. For a straightforward study, these parameters are represented using the gain factor, which allows for an accurate comparison of the efficiency of various types of converters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.