The Protein Data Bank [PDB; Berman, Westbrook et al. (2000), Nucleic Acids Res. 28, 235-242; http://www.pdb.org/] is the single worldwide archive of primary structural data of biological macromolecules. Many secondary sources of information are derived from PDB data. It is the starting point for studies in structural bioinformatics. This article describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource. The reader should come away with an understanding of the scope of the PDB and what is provided by the resource.
A consensus classification and nomenclature are defined for RNA backbone structure using all of the backbone torsion angles. By a consensus of several independent analysis methods, 46 discrete conformers are identified as suitably clustered in a qualityfiltered, multidimensional dihedral angle distribution. Most of these conformers represent identifiable features or roles within RNA structures. The conformers are given two-character names that reflect the seven-angle dezabgd combinations empirically found favorable for the sugar-to-sugar ''suite'' unit within which the angle correlations are strongest (e.g., 1a for A-form, 5z for the start of S-motifs). Since the half-nucleotides are specified by a number for dez and a lowercase letter for abgd, this modular system can also be parsed to describe traditional nucleotide units (e.g., a1) or the dinucleotides (e.g., a1a1) that are especially useful at the level of crystallographic map fitting. This nomenclature can also be written as a string with two-character suite names between the uppercase letters of the base sequence (N1aG1gN1aR1aA1cN1a for a GNRA tetraloop), facilitating bioinformatic comparisons. Cluster means, standard deviations, coordinates, and examples are made available, as well as the Suitename software that assigns suite conformer names and conformer match quality (suiteness) from atomic coordinates. The RNA Ontology Consortium will combine this new backbone system with others that define base pairs, base-stacking, and hydrogen-bond relationships to provide a full description of RNA structural motifs.
A statistical survey of the torsion angles, bond angles, and bond lengths in the sugar and phosphate groups of well-refined mononucleoside, mononucleotide, dinucleoside monophosphate, and trinucleoside diphosphate crystal structures contained in the Cambridge Structural Database and the Nucleic Acid Database is reported. The mean values of the geometrical parameters in these structures and their estimated standard deviations are separated according to their chemistry and conformation. These new parameters serve as a basis for a dictionary of standard nucleic acid geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.