Intramolecular processes of deactivation of 1,3-dimethyl-4-thiouracil (DMTU) from the second excited singlet (S2) (pi, pi*) and the lowest excited triplet (T1) (pi, pi*) states have been studied using perfluoro-1,3-dimethylcyclohexane (PFDMCH) as a solvent. The spectral and photophysical (PP) properties of DMTU in CCl4, hexane and water have also been described. For the first time, the fluorescence from S2 state DMTU has been observed. The picosecond lifetime of DMTU in the S2 state (tau(S2)) in PFDMCH has been proposed to be determined by a very fast intramolecular reversible process of hydrogen abstraction from the ortho methyl group by the thiocarbonyl group. The shortening of tau(S2) in CCl4 is interpreted to be caused by the intermolecular interactions between DMTU (S2) and the solvent. Results of the phosphorescence decay as a function of DMTU concentration were analyzed using the Stern-Volmer formalism, which enabled determination of the intrinsic lifetime of the T1 state (tau0(T1)) and rate constants of self-quenching (k(sq)). The lifetimes, tau0(T1), of DMTU in PFDMCH and CCl4 are much longer than the values hitherto obtained in more reactive solvents. The PP properties of DMTU both in the S2 and T1 states have been shown to be determined by the thiocarbonyl group.
A novel solvatochromic betaine dye has been synthesized from xanthosine and characterized spectroscopically by UV-vis in a broad range of solvents. The dye 9-(2',3',5'-tri-O-acetyl-beta-d-ribofuranosyl)-2-(pyridinium-1-yl)-9H-purin-6-olate, 1a, exhibits solvent-induced spectral band shifts that are (2)/(3) as large as that of the betaine known as Reichardt's dye, which forms the basis of the E(T)(30) solvent polarity scale. Moreover, the dye 1a is a ribonucleoside and hence has the potential application as a polarity probe for application in RNA oligonucleotides. The isomeric dye 6-(pyridinium-1)-yl-9H-purin-2-olate, 2a, has also been synthesized and exhibits slightly smaller solvatochromic band shifts. The new betaine dyes have also been studied by comparing the experimental and calculated solvatochromic shifts based on the calculation of the UV/vis absorption spectra, using a combination of methods with density functional theory (DFT). The COSMO continuum dielectric method, an applied electric field term in the Hamiltonian, and time-dependent density functional theory (TD-DFT) methods were used to obtain absorption energies, ground-state dipole moments, and the difference dipole moment between the ground and excited states. The calculations predict a lower energy absorption band of charge-transfer character that is highly solvatochromic, and a higher energy absorption band that has pi-pi character which is not solvatochromic, in agreement with the experimental data. For Reichardt's dye the difference dipole moment between the ground and excited state (Deltamu = mu(e) - mu(g)) was also calculated and compared to experiment: Deltamu(calcd) = -6 D and Deltamu(exptl) = -9 +/- 1 D.(1) The ground-state dipole moment was found to be mu(g)(calcd) = 18 D and mu(g)(exptl) = 14.8 +/- 1.2 D.(1).
Limitations of available indicators [such as 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ)] for measurement of intracellular Cl(-) are their relatively dim fluorescence and need for ultraviolet excitation. A series of long-wavelength polar fluorophores was screened to identify compounds with Cl(-) and/or I(-) sensitivity, bright fluorescence, low toxicity, uniform loading of cytoplasm with minimal leakage, and chemical stability in cells. The best compound found was 7-(beta-D-ribofuranosylamino)-pyrido[2, 1-h]-pteridin-11-ium-5-olate (LZQ). LZQ is brightly fluorescent with excitation and emission maxima at 400-470 and 490-560 nm, molar extinction 11,100 M(-1). cm(-1) (424 nm), and quantum yield 0.53. LZQ fluorescence is quenched by I(-) by a collisional mechanism (Stern-Volmer constant 60 M(-1)) and is not affected by other halides, nitrate, cations, or pH changes (pH 5-8). After LZQ loading into cytoplasm by hypotonic shock or overnight incubation, LZQ remained trapped in cells (leakage <3%/h). LZQ stained cytoplasm uniformly, remained chemically inert, did not bind to cytoplasmic components, and was photobleached by <1% during 1 h of continuous illumination. Cytoplasmic LZQ fluorescence was quenched selectively by I(-) (50% quenching at 38 mM I(-)). LZQ was used to measure forskolin-stimulated I(-)/Cl(-) and I(-)/NO(-)(3) exchange in cystic fibrosis transmembrane conductance regulator (CFTR)-expressing cell lines by fluorescence microscopy and microplate reader instrumentation using 96-well plates. The substantially improved optical and cellular properties of LZQ over existing indicators should permit the quantitative analysis of CFTR function in gene delivery trials and high-throughput screening of compounds for correction of the cystic fibrosis phenotype.
The ground state reaction path for formation of the pyrimidine hydrates was calculated using a nudged elastic band (NEB) approach, combined with a calculation of the transition state, and implemented using a numerical basis set in the density functional theory (DFT) code DMol(3). The model systems used for study consist of 1-methyl pyrimidines with a H2O molecule as the reactant, and the corresponding C5-hydro-C6-hydroxypyrimidine as the product. The barrier to addition of water across the C5-C6 π-bond ranges from 43-48 kcal mol(-1) in the 1-methylpyrimidines (1-MP) studied. Similar but slightly smaller barriers of 34-45 kcal mol(-1) were found for the tautomers of the 1-MPs, i.e. the enols of uridine and thymine and imine of cytosine. Comparison of these calculations with previous computational and experimental work suggests that a hot ground state formed by the rapid internal conversion of pyrimidines has sufficient energy to permit crossover from the common form to the tautomeric form of the pyrimidine at the transition state. The hot ground state mechanism can account for the experimentally observed yield and thermal reversion of pyrimidine photohydrates, while simultaneously explaining the effect of photohydrates on the mutation rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.