Abstract:Observations of sea surface wind field are critical for typhoon prediction. The scatterometer observation is one of the most important sources of sea surface winds, which provides both wind speed and wind direction information. However, the spatial resolution of scatterometer wind is low. Synthetic Aperture Radar (SAR) can provide a more detailed wind structure of the tropical cyclone. In addition, the cross-polarization observation of SAR can provide more detailed information of high speed wind (>25 m·s −1 ) than the scatterometer. Nevertheless, due to the narrow swath of SAR, the number of retrieved sea surface wind data used in the data assimilation is limited, and another limitation of SAR wind observation is that it does not provide true wind direction information. In this paper, the joint assimilation of the Advanced Scatterometer (ASCAT) wind and Sentinel-1 SAR wind was investigated. Another limitation in the current operational typhoon prediction is the inefficient quality control (QC) method used in the data assimilation since a large number of high speed wind observations was rejected by the traditional Gaussian distribution QC. We introduce the Huber norm distribution quality control (QC) into the data assimilation successfully. A numerical simulation experiment of typhoon by Lionrock (2016) is conducted to test the proposed method. The experimental results showed that the new quality control scheme not only greatly increases the availability of wind data in the area of the typhoon center, but also improves the typhoon track prediction, as well as the intensity prediction. The joint assimilation of scatterometer and SAR winds does have a positive impact on the typhoon prediction.
Searching is one of the most fundamental operations in many complex systems. However, the complexity of the search process would increase dramatically in high-dimensional space. K-dimensional (KD) tree, as a classical data structure, has been widely used in high-dimensional vital data search. However, at present, common methods proposed for KD tree construction are either unstable or time-consuming. This paper proposed a new algorithm to construct a balanced KD tree based on presorted results. Compared with previous similar method, the new algorithm could reduce the complexity of the construction process (excluding the presorting process) from O (KNlog2N) level to O (Nlog2N) level, where K is the number of dimensions and N is the number of data. In addition, with the help of presorted results, the performance of the new method is no longer subject to the initial conditions, which expands the application scope of KD tree.
High-resolution synthetic aperture radar (SAR) wind observations provide fine structural information for tropical cycles and could be assimilated into numerical weather prediction (NWP) models. However, in the conventional method assimilating the u and v components for SAR wind observations (SAR_uv), the wind direction is not a state vector and its observational error is not considered during the assimilation calculation. In this paper, an improved method for wind observation directly assimilates the SAR wind observations in the form of speed and direction (SAR_sd). This method was implemented to assimilate the sea surface wind retrieved from Sentinel-1 synthetic aperture radar (SAR) in the basic three-dimensional variational system for the Weather Research and Forecasting Model (WRF 3DVAR). Furthermore, a new quality control scheme for wind observations is also presented. Typhoon Lionrock in August 2016 is chosen as a case study to investigate and compare both assimilation methods. The experimental results show that the SAR wind observations can increase the number of the effective observations in the area of a typhoon and have a positive impact on the assimilation analysis. The numerical forecast results for this case show better results for the SAR_sd method than for the SAR_uv method. The SAR_sd method looks very promising for winds assimilation under typhoon conditions, but more cases need to be considered to draw final conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.