To tackle ecological problems, many ecological restoration projects have been implemented in northern China. Identifying the drivers of vegetation change is critical for continued ecological engineering. In this study, three typical ecological reserves in the Three-North Shelter Forest Program Region (TNSFR) were selected to identify their vegetation development characteristics and driving mechanisms using the normalized difference vegetation index (NDVI), climate factors, and land use data. The results show that (1) NDVIs increased in the range of human activities of all of the three ecological reserves, indicating an obvious effect of the vegetation restoration projects. (2) In the planting period, vegetation restoration was mainly correlated with human activities. After entering the tending period, the impact of climate changes on vegetation dynamics was enhanced. (3) Temperature and precipitation provided approximate driving effects on vegetation dynamics in Region I, while vegetation dynamics in Regions II and III were more strongly correlated with precipitation. (4) The proportion of areas with ecological measures exceeded 50% in all three regions. In short, ecological projects in the three ecological reserves dominated the quantity of vegetation restoration, while climate changes influenced the quality of vegetation restoration.
As global warming continues, extreme precipitation events occur frequently in inland areas, seriously affecting human security and the ecological environment. Spatiotemporal evolution of extreme precipitation as well as response of extreme precipitation to climatic warming and its mechanism were investigated by considering the Weihe river basin in a monsoon transition zone of China as a research object. The results indicate that while the annual average temperature of the Weihe river basin increased with fluctuations from 1966 to 2017, except for the consecutive dry days (CDD) and simple daily intensity index that increased slightly, the other extreme precipitation indices (consecutive wet days, R25, and Rx5day) tended to decrease. Moreover, except for the CDD, the other four indices gradually increased from the northwest to the southeast, showing a similar trend to the temperature. The relationship between the 95th percentile threshold and temperature (hereinafter referred to as the P 95d–T relationship) in the Weihe river basin demonstrates the hook structure and its strength in terms of response is mainly dominated by the super-Clausius–Clapeyron (C–C) and C–C scaling. Furthermore, the peak temperature rises gradually from the northwest to the southeast. The results can provide important reference for the prediction of climate change and future studies of disaster risk in the Weihe river basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.