Over the past decade, significant efforts have been made to improve the trade-off between speed and accuracy of surface normal estimators (SNEs). This paper introduces an accurate and ultrafast SNE for structured range data. The proposed approach computes surface normals by simply performing three filtering operations, namely, two image gradient filters (in horizontal and vertical directions, respectively) and a mean/median filter, on an inverse depth image or a disparity image. Despite the simplicity of the method, no similar method already exists in the literature. In our experiments, we created three large-scale synthetic datasets (easy, medium and hard) using 24 3-dimensional (3D) mesh models. Each mesh model is used to generate 1800--2500 pairs of 480x640 pixel depth images and the corresponding surface normal ground truth from different views. The average angular errors with respect to the easy, medium and hard datasets are 1.6 degrees, 5.6 degrees and 15.3 degrees, respectively. Our C++ and CUDA implementations achieve a processing speed of over 260 Hz and 21 kHz, respectively. Our proposed SNE achieves a better overall performance than all other existing computer vision-based SNEs. Our datasets and source code are publicly available at: sites.google.com/view/3f2n.
Using different sensors in an autonomous vehicle (AV) can provide multiple constraints to optimize AV location estimation. In this paper, we present a low-cost GPSassisted LiDAR state estimation system for AVs. Firstly, we utilize LiDAR to obtain highly precise 3D geometry data. Next, we use an inertial measurement unit (IMU) to correct point cloud misalignment caused by incorrect place recognition. The estimated LiDAR odometry and IMU measurement are then jointly optimized. We use a lost-cost GPS instead of a realtime kinematic (RTK) module to refine the estimated LiDARinertial odometry. Our low-cost GPS and LiDAR complement each other, and can provide highly accurate vehicle location information. Moreover, a low-cost GPS is much cheaper than an RTK module, which reduces the overall AV sensor cost. Our experimental results demonstrate that our proposed GPS-aided LiDAR-inertial odometry system performs very accurately. The accuracy achieved when processing a dataset collected in an industrial zone is approximately 0.14 m.
In the era of artificial intelligence, accomplishing emotion recognition in human–computer interaction is a key work. Expressions contain plentiful information about human emotion. We found that the canny edge detector can significantly help improve facial expression recognition performance. A canny edge detector based dual-channel network using the OI-network and EI-Net is proposed, which does not add an additional redundant network layer and training. We discussed the fusion parameters of α and β using ablation experiments. The method was verified in CK+, Fer2013, and RafDb datasets and achieved a good result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.