The pathogenesis of Alzheimer's disease (AD) has still not been fully elucidated, however it is thought that the build up of amyloid plaque at least partially causes the symptoms of AD. MicroRNAs (miRNAs) are endogenous non‑coding small RNA molecules that regulate the expression and degradation of proteins. The present study induced symptoms of AD in mice via intraventricular injection of amyloid‑β 1‑42 (Aβ1‑42), which decreased levels of miR‑107. However, miR‑107 levels increased following administration of miR‑107 mimic, a double‑stranded RNA molecule designed to imitate the native miRNA. Intraventricular injection of Aβ1‑42 aggregates led to spatial memory impairments, inhibited hippocampal long‑term potentiation (LTP) and resulted in the loss of pyramidal cells in the CA1 region of the hippocampus. The miR‑107 mimic reversed the impairments of spatial memory and LTP and the loss of pyramidal neurons caused by Aβ neurotoxicity. Furthermore, the miR‑107 mimic reversed the Aβ‑induced increase in Aβ1‑42 and phosphorylated Tau levels. Critically, Aβ1‑42 injection decreased levels of brain‑derived neurotrophic factor and reduced the phosphorylation of tyrosine receptor kinase B and protein kinase B; these changes were reversed following treatment with the miR‑107 mimic. Collectively, these results demonstrated that miR‑107 may be a potential target for the treatment of AD.
Current evidence suggests that drugs, such as donepezil and memantine, can improve the prognosis of PSA. Donepezil has a significant effect in improving the ability of auditory comprehension, naming, repetition and oral expression. Memantine has a significant effect in improving the ability of naming, spontaneous speech and repetition. Bromocriptine showed no significant improvements in the treatment of aphasia after stroke. Data regarding galantamine, amphetamine and levodopa in the treatment of aphasia after stroke are limited and inconclusive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.