Heat conduction between parallel plates separated by a thin layer of liquid Argon is investigated using three-dimensional molecular dynamics (MD) simulations employing 6-12 Lennard-Jones potential interactions. Channel walls are maintained at specific temperatures using a recently developed interactive thermal wall model. Heat flux and temperature distribution in nanochannels are calculated for channel heights varying from 12.96 to 3.24 nm. Fourier law of heat conduction is verified for the smallest channel, while the thermal conductivity obtained from Fourier law is verified using the predictions of Green-Kubo theory. Temperature jumps at the liquid/solid interface, corresponding to the well known Kapitza resistance, are observed. Using systematic studies thermal resistance length at the interface is characterized as a function of the surface wettability, thermal oscillation frequency, wall temperature, thermal gradient, and channel height. An empirical model for the thermal resistance length, which could be used as the jump coefficient of a Navier boundary condition, is developed. Temperature distribution in nanochannels is predicted using analytical solution of continuum heat conduction equation subjected to the new temperature jump condition. Analytical predictions are verified using MD simulations.
In molecular-level fluidic transport, where the discrete characteristics of a molecular system are not negligible (in contrast to a continuum description), the response of the molecular water system might still be similar to the continuum description if the time and ensemble averages satisfy the ergodic hypothesis and the scale of the average is enough to recover the classical thermodynamic properties. However, even in such cases, the continuum description breaks down on the material interfaces. In short, molecular-level liquid flows exhibit substantially different physics from classical fluid transport theories because of (i) the interface/surface force field, (ii) thermal/velocity slip, (iii) the discreteness of fluid molecules at the interface and (iv) local viscosity. Therefore, in this study, we present the result of our investigations using molecular dynamics (MD) simulations with continuum-based energy equations and check the validity and limitations of the continuum hypothesis. Our study shows that when the continuum description is subjected to the proper treatment of the interface effects via modified boundary conditions, the so-called continuum-based modified-analytical solutions, they can adequately predict nanoscale fluid transport phenomena. The findings in this work have broad effects in overcoming current limitations in modeling/predicting the fluid behaviors of molecular fluidic devices.
Molecular dynamics (MD) simulations of nano-scale flows typically utilize fixed lattice crystal interactions between the fluid and stationary wall molecules. This approach cannot properly model interactions and thermal exchange at the wall-fluid interface. We present a new interactive thermal wall model that can properly simulate the flow and heat transfer in nano-scale channels. The new model utilizes fluid molecules freely interacting with the thermally oscillating wall molecules, which are connected to the lattice positions with ''bonds''. Thermostats are applied separately to each layer of the walls to keep the wall temperature constant, while temperature of the fluid is sustained without the application of a thermostat. Two-dimensional MD simulation results for shear driven nano-channel flow shows parabolic temperature distribution within the domain, induced by viscous heating due to a constant shear rate. As a result of the Kapitza resistance, temperature profiles exhibit jumps at the fluid-wall interface. Time dependent simulation results for freezing of liquid argon in a nano-channel are also presented.
Three-dimensional Molecular Dynamics (MD) simulations of heat and momentum transport in liquid Argon filled shear-driven nano-channels are performed using 6-12 Lennard-Jones potential interactions. Work done by the viscous stresses heats the fluid, which is dissipated through the channel walls, maintained at isothermal conditions through a recently developed interactive thermal wall model. Shear driven nano-flows for weak wetting surfaces (e wf /e B 0.6) are investigated. Spatial variations in the fluid density, kinematic viscosity, shear-and energy dissipation rates are presented. Temperature profiles in the nano-channel are obtained as a function of the surface wettability, shear rate and the intermolecular stiffness of wall molecules. The energy dissipation rate is almost a constant for e wf /e B 0.6, which results in parabolic temperature profiles in the domain with temperature jumps due to the well known Kapitza resistance at the liquid/solid interfaces. Using the energy dissipation rates predicted by MD simulations and the continuum energy equation subjected to the temperature jump boundary conditions developed in [Kim et al. Journal of Chemical Physics, 129, 174701, 2008b], we obtain analytical solutions for the temperature profiles, which agree well with the MD results.
In this paper, we present an approach for predicting nanoscale capillary imbibitions using the Lucas-Washburn (LW) theory. Molecular dynamics (MD) simulations were employed to investigate the effects of surface forces on the viscosity of liquid water. This provides an update to the modified LW equation that considered only a nanoscale slip length. An initial water nanodroplet study was performed to properly elucidate the wetting behavior of copper and gold surfaces. Intermolecular interaction strengths between water and corresponding solid surfaces were determined by matching the contact angle values obtained by experimental measurements. The migration of liquid water into copper and gold capillaries was measured by MD simulations and was found to differ from the modified LW equation. We found that the liquid layering in the vicinity of the solid surface induces a higher density and viscosity, leading to a slower MD uptake of fluid into the capillaries than was theoretically predicted. The near-surface viscosity for the nanoscale-confined water was defined and calculated for the thin film of water that was sheared between the two solid surfaces, as the ratio of water shear stress to the applied shear rate. Considering the effects of both the interface viscosity and slip length of the fluid, we successfully predicted the MD-measured fluid rise in the nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.