We extend the spectrum of phenotypes caused by mutations in the Wnt/Norrin coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) by identifying two novel types of mutation in related individuals whose presenting features were profound muscle hypotonia, mild mental retardation, blindness, and growth retardation. One mutation removes 6 out of 9 consecutive leucine residues in the LRP5 signal peptide (c.43_60del or p.Leu15_Leu20del), which impairs polypeptide entry into the endoplasmic reticulum (ER), trafficking to the cell membrane, and signal transduction. The second mutation resulted from nonhomologous recombination between Alu repeat sequences, which deleted exons 14-16 and would produce a nonfunctional, truncated, and frameshifted polypeptide, if expressed [chr11:g.(13871447_1387511)_(13879636_13879700)del (NW_925106.1) or p.Pro1010GlnfsX38]. We confirmed that the length of the LRP5 signal peptide poly-leucine repeat is polymorphic in the general population, and, importantly, we were able to demonstrate in independent in vitro assays that different allele sizes affect receptor processing and signal transduction. Consequently, this polymorphism may have physiologic effects in vivo. This latter finding is relevant since through a genomewide search we identified nearly 400 human proteins that contain poly-leucine repeats within their signal peptide. We chose 18 of these proteins and genotyped the underlying trinucleotide repeat in healthy Caucasian individuals. More than one length allele was observed in one-half of the proteins. We therefore propose that natural variation in poly-leucine-stretches within signal peptides constitutes a currently unrecognized source of variability in protein translation and expression.
Osteoporosis-pseudoglioma sydrome (OPPG) is an autosomal recessive disorder with early-onset severe osteoporosis and blindness, caused by biallelic loss-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene. Heterozygous carriers exhibit a milder bone phenotype. Only a few splice mutations in LRP5 have been published. We present clinical and genetic data for four patients with novel LRP5 mutations, three of which affect splicing. Patients were evaluated clinically and by radiography and bone densitometry. Genetic screening of LRP5 was performed on the basis of the clinical diagnosis of OPPG. Splice aberrances were confirmed by cDNA sequencing or exon trapping. The effect of one splice mutation on LRP5 protein function was studied. A novel splice-site mutation c.1584+4A4T abolished the donor splice site of exon 7 and activated a cryptic splice site, which led to an in-frame insertion of 21 amino acids (p.E528_V529ins21). Functional studies revealed severely impaired signal transduction presumably caused by defective intracellular transport of the mutated receptor. Exon trapping was used on two samples to confirm that splice-site mutations c.4112-2A4G and c.1015+1G4T caused splicing-out of exons 20 and 5, respectively. One patient carried a homozygous deletion of exon 4 causing the loss of exons 4 and 5, as demonstrated by cDNA analysis. Our results broaden the spectrum of mutations in LRP5 and provide the first functional data on splice aberrations.
Background: Cerebral cavernous malformations (CCM) are vascular brain anomalies which can result in a variety of neurological symptoms. Familial CCM is inherited as an autosomal-dominant trait. There is one study in the literature which reports statistical evidence for anticipation in familial CCM. Methods: We reevaluated the clinical course of the disease and performed molecular analyses in a previously described three-generation CCM family with apparent anticipation. Results: Disease started at a younger age in each generation, strongly suggesting anticipation. The patient in generation I showed no clinical symptoms by the age of 68, whereas his son became wheelchair-bound at the age of 43 due to an intramedullary cavernous malformation at the thoracolumbar transition of the spinal cord. The patient in generation III had a pons hemorrhage at the age of 11 due to a large brainstem cavernoma. The hemorrhage caused facial palsy and hemiparesis, persisting as Millard-Gubler syndrome. Sequencing of KRIT1 identified a novel frameshift mutation in exon 15 (c.1561delC or p.Leu551X) which cosegregated with the phenotype. Flow-FISH analysis of granulocyte and lymphocyte telomere length showed that telomeres were longest in the youngest affected family member. Conclusions: We could not find any evidence for either of the two currently known molecular mechanisms for genetic anticipation (i.e., expansion of repetitive DNA elements or progressive telomere shortening) in this family. However, the family presented here raises the important question whether surveillance of CCM families with gradient-echo MRI should not only include the cerebrum, but the spinal cord as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.