Extreme changes of environmental conditions can alter the soil properties and influence the migration ability and bioavailability of pollutants. Elucidation of the effects of the extreme weather conditions, such as sharp temperature change, drought and floods, on the fractionation of radionuclides in different soil types is especially important for adequate risk assessment after radioactive contamination. The effects of short-term and prolonged freezing and soil drought on the geochemical fractionation of americium in two soil types (Fluvisol and Cambisol, classified according to the World Reference Base for Soil Resources/FAO) from Bulgaria were studied. The changes of the physico-chemical forms of 241 Am after storage under different conditions were determined by the sequential extraction procedure and gamma-spectrometric measurements. The impact of the sharp temperature decrease and drought on the association of the radionuclide with the various soil phases was considered in terms of the soil characteristics. The results showed that the risk of increased mobility and bioavailability of americium in the loamy-sand soil with acidic pH and very low cation exchange capacity (CEC) exists under the examined extreme environmental conditions. The soil with sand-loam texture tended to immobilize americium after freeze and drought storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.