Earth observation data have assumed a key role in environmental monitoring, as well as in risk assessment. Rising temperatures and consequently heat waves due to ongoing climate change represent an important risk considering the population, as well as animals, exposed. This study was focused on the Aosta Valley Region in NW Italy. To assess population exposure to these patterns, the following datasets have been considered: (1) HDX Meta population dataset refined and updated in order to map population distribution and its features; (2) Landsat collection (missions 4 to 9) from 1984 to 2022 obtained and calibrated in Google Earth Engine to model LST trends. A pixel-based analysis was performed considering Aosta Valley settlements and relative population distribution according to the Meta population dataset. From Landsat data, LST trends were modelled. The LST gains computed were used to produce risk exposure maps considering the population distribution and structure (such as ages, gender, etc.). To check the consistency and quality of the HDX population dataset, MAE was computed considering the ISTAT population dataset at the municipality level. Exposure-risk maps were finally realized adopting two different approaches. The first one considers only LST gain maximum by performing an ISODATA unsupervised classification clustering in which the separability of each class obtained and was checked by computing the Jeffries–Matusita (J-M) distances. The second one was to map the rising temperature exposure by developing and performing a risk geo-analysis. In this last case the input parameters considered were defined after performing a multivariate regression in which LST maximum was correlated and tested considering (a) Fractional Vegetation Cover (FVC), (b) Quote, (c) Slope, (d) Aspect, (e) Potential Incoming Solar Radiation (mean sunlight duration in the meteorological summer season), and (f) LST gain mean. Results show a steeper increase in LST maximum trend, especially in the bottom valley municipalities, and especially in new built-up areas, where more than 60% of the Aosta Valley population and domestic animals live and where a high exposure has been detected and mapped with both approaches performed. Maps produced may help the local planners and the civil protection services to face global warming from a One Health perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.