Abstract.The aim of this study is an extension and employment of the concept of topological derivative as it pertains to the nucleation of infinitesimal inclusions in a reference (i.e. background) acoustic medium. The developments are motivated by the need to develop a preliminary indicator functional that would aid the solution of inverse scattering problems in terms of a rational initial "guess" about the geometry and material characteristics of a hidden (finite) obstacle; an information that is often required by iterative minimization algorithms. To this end the customary definition of topological derivative, that quantifies the sensitivity of a given cost functional with respect to the creation of an infinitesimal hole, is adapted to permit the nucleation of a dissimilar acoustic medium. On employing the Green's function for the background domain, computation of topological sensitivity for the three-dimensional Helmholtz equation is reduced to the solution of a reference, Laplace transmission problem. Explicit formulas are given for the nucleating inclusions of spherical and ellipsoidal shape. For generality the developments are also presented in an alternative, adjoint-field setting that permits nucleation of inclusions in an infinite, semi-infinite or finite background medium. Through numerical examples it is shown that the featured topological sensitivity could be used, in the context of inverse scattering, as an effective obstacle indicator through an assembly of sampling points where it attains pronounced negative values. On varying a material characteristic (density) of the nucleating obstacle, it is also shown that the proposed methodology can be used as a preparatory tool for both geometric and material identification.
This paper is concerned with an application of the concept of topological derivative to elastic-wave imaging of finite solid bodies containing cavities. Building on the approach originally proposed in the (elastostatic) theory of shape optimization, the topological derivative, which quantifies the sensitivity of a featured cost functional due to the creation of an infinitesimal hole in the cavity-free (reference) body, is used as a void indicator through an assembly of sampling points where it attains negative values. The computation of topological derivative is shown to involve an elastodynamic solution to a set of supplementary boundary-value problems for the reference body, which are here formulated as boundary integral equations. For a comprehensive treatment of the subject, formulas for topological sensitivity are obtained using three alternative methodologies, namely (i) direct differentiation approach, (ii) adjoint field method, and (iii) limiting form of the shape sensitivity analysis. The competing techniques are further shown to lead to distinct computational procedures. Methodologies (i) and (ii) are implemented within a BEM-based platform and validated against an analytical solution. A set of numerical results is included to illustrate the utility of topological derivative for 3D elastic-wave sounding of solid bodies; an approach that may perform best when used as a pre-conditioning tool for more accurate, gradient-based imaging algorithms. Despite the fact that the formulation and results presented in this investigation are established on the basis of a boundary integral solution, the proposed methodology is readily applicable to other computational platforms such as the finite element and finite difference techniques
Abstract. A theoretical foundation is developed for active seismic reconstruction of fractures endowed with spatially-varying interfacial condition (e.g. partially-closed fractures, hydraulic fractures). The proposed indicator functional carries a superior localization property with no significant sensitivity to the fracture's contact condition, measurement errors, and illumination frequency. This is accomplished through the paradigm of the F -factorization technique and the recently developed Generalized Linear Sampling Method (GLSM) applied to elastodynamics. The direct scattering problem is formulated in the frequency domain where the fracture surface is illuminated by a set of incident plane waves, while monitoring the induced scattered field in the form of (elastic) far-field patterns. The analysis of the wellposedness of the forward problem leads to an admissibility condition on the fracture's (linearized) contact parameters. This in turn contributes toward establishing the applicability of the F -factorization method, and consequently aids the formulation of a convex GLSM cost functional whose minimizer can be computed without iterations. Such minimizer is then used to construct a robust fracture indicator function, whose performance is illustrated through a set of numerical experiments. For completeness, the results of the GLSM reconstruction are compared to those obtained by the classical linear sampling method (LSM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.